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ABSTRACT 

 

Cachexia is a multifactorial syndrome that manifests during the advanced stage of chronic 

diseases and is characterized by a progressive loss of body mass sustained by underlying 

inflammation. The ApcMin/+ mouse is an established model of cachexia that exhibits a 

gradual loss of body mass correlating with increasing tumor burden and plasma IL – 6 

levels. Moreover it also mimics other secondary characteristics observed in cachectic 

patients like splenomegaly, elevated plasma endotoxin levels, gut barrier dysfunction, 

hypogonadism and an overall hypermetabolic state.  Liver controls the energy metabolism 

in the body by regulating glucose and lipid metabolism, glycogen storage, filtration of 

toxins from the portal blood, secretion of essential plasma protein like albumin and other 

acute phase proteins. As cachexia development results from sustained elevated energy 

demands, it can be speculated that liver might play a role in development of cachexia 

progression. The purpose of this study thus was to examine the role of chronic 

inflammation on liver function in the ApcMin/+ model of cancer cachexia. For this study liver 

function was studied using hepatic metabolic markers, inflammatory markers and markers 

of anabolic signaling. Specific Aim1 examined if liver function is altered with cachexia 

progression in the ApcMin/+ mouse.  We report that liver function is altered by upregulation 

ER stress protein in non – cachectic mice. Non – cachectic mice also upregulate liver 

STAT- 3 phosphorylation along and suppression of liver gluconeogenic enzyme 

transcription. 
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However, the liver maintains stores glycogen stores, Akt/mTOR/S6 signaling expression 

and does not initiate a NF - B or acute phase dependent immune response. However 

cachexia progression, sustains activation of ER stress pathways leading to     inhibition of 

protein synthesis marker S6 phosphorylation and activation of the apoptotic marker CHOP. 

Severely cachectic mice exhibit inhibition of proteins associated with cell survival like Akt, 

ERK and NF - B. This is accompanied by an elevated STAT-3 and haptaglobin levels, 

but suppressed JNK expression in the liver. However, histological analysis of the cachectic 

liver shows a regenerative and inflammatory pathology post injury. Severely cachectic 

mice also show depleted liver glycogen reserves along with upregulation of enzymes 

regulating gluconeogeneic and glycolytic process. These results indicate the cachexia 

progression leads to liver dysfunction by elevating transcription of enzymes regulating 

glucose flux, acute phase protein response and inhibition of anabolic and survival pathways 

in the IL – 6 dependent ApcMin/+ model. Specific Aim 2 was targeted towards the inhibition 

of IL – 6 signaling to attenuate chronic inflammation in the ApcMin/+ mouse.  Aim 2.1 used 

pyrrolidine dithiocarbamate (PDTC), an antioxidant and inhibitor for NF-B and STAT-3 

phosphorylation, to suppress systemic inhibition in the ApcMin/+ mouse. PDTC 

administration attenuated body weight loss, fat loss and liver lipid content in the cachectic 

mouse. Though PDTC did not attenuate total polyp counts, it did suppress polyp growth 

by suppressing total number of large polyps in the intestine. There was an attenuation of 

liver metabolic markers by suppression of PEPCK mRNA and sparing of liver glycogen 

stores in the PDTC treated mice. Interestingly though liver PFK expression increased 

further with PDTC administration in the cachectic ApcMin/+. Attenuation of metabolic 

markers was seen independent of liver inflammation as liver STAT- 3 and haptaglobin 
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expression remained elevated post treatment. PDTC treatment also did not affect the 

dysregulated Akt/mTOR/S6 signaling in the liver. Aim 2.2 used the trans – IL – 6 inhibitor 

sFcgp130 to attenuate liver dysfunction in the ApcMin/+.  sFcgp130 administration attenuated 

body weight loss and fat loss in the severely cachectic ApcMin/+ mouse, but had no effect on 

total lean mass. sFcgp130 treated ApcMin/+ did not attenuate percentage of large tumors in 

the intestine but it did inhibit plasma IL – 6 levels. However, liver STAT-3 and haptaglobin 

levels were sustained independent of IL – 6. There was an increase in the mRNA levels of 

hepatic PEPCK indicating an upregulation of liver gluconeogenic response which could be 

possible reason for depleted liver glycogen stores in the sFcgp130 treated mice. Inhibition 

of trans – signaling did not attenuate hepatic suppression of the Akt, NF-B or S6 

phosphorylation. Overall these results indicate that liver dysfunction during cachexia 

progression is independent of the IL – 6 signaling pathway. Aim 3 of this study examined 

the role of antibiotic treatment on cachexia progression in the ApcMin/+ mouse. The purpose 

of the antibiotic treatment was to suppress endotoxin mediated inflammatory response in 

the severely cachectic ApcMin/+ mouse. Administration of the antibiotic treatment attenuated 

splenomegaly and mesenteric lymph node swelling the ApcMin/+ mouse, indicating 

suppression of immune proliferation. However, this suppression of immune cell 

proliferation was not sufficient to suppress hepatic STAT-3 or haptaglobin levels. 

Surprisingly even plasma endotoxin levels remained elevated in the antibiotic treated 

ApcMin/+ mouse. Antibiotic treatment had no effect of hepatic NF-B/MMP2 or Akt/S6 

pathway. Overall these results demonstrate that liver dysfunction is observed with cachexia 

progression in the ApcMin/+ mouse and this dysfunction is independent of plasma IL – 6 and 

factors affecting splenomegaly.  



www.manaraa.com

` 

vii 
 

TABLE OF CONTENTS 

Dedication .......................................................................................................................... iii 

Abstract .............................................................................................................................. iv 

List of Tables ..................................................................................................................... ix 

List of Figures ................................................................................................................... xii 

List of Abbreviation ......................................................................................................... xiv 

Chapter 1- Introduction and Literature Review ...................................................................1 

1.1Introduction ............................................................................................................1 

1.2 Review of Literature .............................................................................................7 

Chapter 2 – Role of Cachexia Progression on Liver function in the ApcMin/+ mice ...........16 

2.1 Abstract ...............................................................................................................17 

2.2 Introduction .........................................................................................................18 

2.3 Materials and methods ........................................................................................21 

2.4 Results .................................................................................................................24 

2.5 Discussion ...........................................................................................................28 

2.6 Acknowledgements .............................................................................................32 

2.7 Figure Legends................................................................................................... 33 

Chapter 3 – Role of Chronic Inflammation on Liver Function in Cachectic ApcMin/+ 

Mice ...................................................................................................................................45 

 

3.1 Abstract ...............................................................................................................46 

3.2 Introduction .........................................................................................................47 



www.manaraa.com

` 

viii 
 

3.3 Materials and methods ........................................................................................49 

3.4 Results .................................................................................................................53 

3.5 Discussion ...........................................................................................................58 

3.6 Acknowledgements .............................................................................................62 

3.7 Figure Legends................................................................................................... 63 

Chapter 4 – The Effect of an Antibiotic treatment On Liver Function in Cachectic 

ApcMin/+ Mice ......................................................................................................................81 

 

4.1 Abstract ...............................................................................................................82 

4.2 Introduction .........................................................................................................83 

4.3 Materials and methods ........................................................................................85 

4.4 Results .................................................................................................................88 

4.5 Discussion ...........................................................................................................90 

4.6 Acknowledgements .............................................................................................92 

4.7 Figure Legends................................................................................................... 94 

Chapter 5 – Overall Discussion .......................................................................................101 

References ........................................................................................................................107 

Appendix A – Supplemental Data ...................................................................................115 

Appendix B – Detailed Protocols  ...................................................................................121 

Appendix C – Proposal  ...................................................................................................147  

Appendix D – Raw Data  .................................................................................................207



www.manaraa.com

` 

ix 
 

 

LIST OF TABLES 

Table 4.1. Body weight, body temperature, endotoxin levels and muscle mass in the WT, 

treated and untreated ApcMin/+ mice .................................................................................93 

Table A.1 Body weight, temperature, endotoxin levels and muscle mass in the WT, treated 

and untreated ApcMin/+ mice .............................................................................................115 

Table D.1: Spectrophotometer reading for the timecourse samples in Aim 1 .................197 

Table D.2: Spectrophotometer reading for 400ng dilution and cDNA synthesis dilutions 

for the time course samples in Aim 1 ..............................................................................198 

Table D.3: Real time PCR data for the gene PEPCK in time course samples for Aim1 .199 

Table D.4: Real time PCR data for the gene TLR4 in time course samples for Aim1 ....199 

Table D.5: Real time PCR raw data for the gene PFK in timecourse samples for Aim1 200 

Table D.6:  Raw Data for quantification of Akt western blots by Image J for the B6 VS 

Min Comparison ..............................................................................................................201 

Table D.7:  Raw data for quantification of Albumin western blots by Image J for the B6 

VS Min Comparison ........................................................................................................201 

Table D.8:  Raw data for quantification of MMP-2 western blots by Image J for the B6 VS 

Min Comparison ..............................................................................................................202 

Table D.9:  Raw data for quantification of NF-κB western blots by Image J for the B6 VS 

Min Comparison ..............................................................................................................202 

Table D.10:  Raw data for quantification of STAT-3 western blots by Image J for the B6 

VS Min Comparison ........................................................................................................203 

Table D.11:  Raw data for quantification of MMP-2 western blots by Image J for the 12 vs 

14 vs 20 week ApcMin/+ Comparison for Aim 1............................................................204 

Table D.12:  Raw data for quantification of p-65 western blots by Image J for the 12 vs 14 

vs 20 week ApcMin/+ Comparison for Aim 1 ................................................................204 

Table D.13:  Raw data for quantification of STAT-3 western blots by Image J for the 12 vs 

14 vs 20 week ApcMin/+ Comparison in Aim 1 .............................................................205 



www.manaraa.com

` 

x 
 

Table D.14:  Raw data for quantification of Albumin western blots by Image J for the 12 

vs 14 vs 20 week ApcMin/+ Comparison in Aim 1 ........................................................205 

Table D.15:  Raw data for quantification of p-S6 western blots by Image J for the 12 vs 14 

vs 20 week ApcMin/+ Comparison in Aim 1 ..................................................................206 

Table D.16: Spectrophotometer reading for 400ng dilution and cDNA synthesis dilutions 

for the timecourse samples in Aim 2 ...............................................................................207 

Table D.17: Real time PCR raw data for the gene Haptaglobin in PDTC and fusion protein 

treated samples for Aim2 .................................................................................................208 

Table D.18: Real time PCR raw data for the gene PEPCK in PDTC and fusion protein 

treated samples for Aim2 .................................................................................................209 

Table D.19: Real time PCR raw data for the gene PEPCK in PDTC and fusion protein 

treated samples for Aim2 .................................................................................................210 

Table D.20:  Raw data for quantification of MMP-2 western blots by Image J for the PDTC 

and fusion protein treated samples for Aim2 ...................................................................211 

Table D.21:  Raw data for quantification of STAT-3 western blots by Image J for the PDTC 

and fusion protein treated samples for Aim2 ...................................................................212 

Table D.22:  Raw data for quantification of gp130 western blots by Image J for the PDTC 

treated samples for Aim2 .................................................................................................213 

Table D.23:  Raw data for quantification of Albumin western blots by Image J for the 

PDTC treated samples for Aim2 ......................................................................................213 

Table D.24:  Raw data for quantification of S6 western blots by Image J for the PDTC 

treated samples for Aim2 .................................................................................................214 

Table D.25:  Raw data for quantification of p-65 western blots by Image J for the PDTC 

treated samples for Aim2 .................................................................................................215 

Table D.26:  Raw data for quantification of STAT-3 western blots by Image J for the gp130 

fusion protein treated samples for Aim2 ..........................................................................216 

Table D.27:  Raw data for quantification of mTOR western blots by Image J for the gp130 

fusion protein treated samples for Aim2 ..........................................................................217 

Table D.28:  Raw data for quantification of S6 western blots by Image J for the gp130 

fusion protein treated samples for Aim2 ..........................................................................218 

Table D.29:  Raw data for quantification of Akt western blots by Image J for the gp130 

fusion protein treated samples for Aim2 ..........................................................................219 

Table D.30:  Raw data for quantification of p-65 western blots by Image J for the gp130 

fusion protein treated samples for Aim2 ..........................................................................220 



www.manaraa.com

` 

xi 
 

Table D.31:  Raw data for quantification of MMP-2 western blots by Image J for the gp130 

fusion protein treated samples for Aim2 ..........................................................................221 

Table D.32: Real time PCR data for the gene Haptaglobin for samples treated with the 

Antibiotics ........................................................................................................................222 

Table D.33: Real time PCR data for the gene PEPCK for samples treated with the 

Antibiotics ........................................................................................................................223 

Table D.34: Real time PCR data for the gene PFK for samples                                                   

treated with the Antibiotics ..............................................................................................223 

Table D.35:  Raw data for quantification of STAT-3 western blots by Image J for for 

samples treated with the Antibiotics ................................................................................224 

Table D.36:  Raw data for quantification of p-65 western blots by Image J for for samples 

treated with the Antibiotics ..............................................................................................225 

Table D.37:  Raw data for quantification of STAT-3 western blots by Image J for for 

samples treated with the Antibiotics ................................................................................226 

Table D.38:  Raw data for quantification of Akt western blots by Image J for for samples 

treated with the Antibiotics in Aim 3 ...............................................................................227 

Table D.39:  Raw data for quantification of mTOR western blots by Image J for for samples 

treated with the Antibiotics in Aim 3 ...............................................................................228 

Table D.40:  Raw data for quantification of S6 western blots by Image J for for samples 

treated with the Antibiotics in Aim 3 ...............................................................................22



www.manaraa.com

` 

xii 
 

LIST OF FIGURES 

Figure 2.1.  Effect of cachexia progression on liver morphology and  

MAP kinase signaling ......................................................................................................35 

 

Figure 2.2.  Effect of cancer on ER stress markers ..........................................................36 

Figure 2.3.  Effect of cancer liver glycogen stores ..........................................................37 

Figure 2.4.  Effect of cancer on liver metabolic, and anabolic signaling in non – cachectic                                  

mice ..................................................................................................................................38 

Figure 2.5. Effect of cancer on liver inflammatory signaling in non – cachectic mice ...39 

Figure 2.6. Hepatic ER stress markers with cachexia progression. .................................40 

Figure 2.7. Changes in liver morphology with cachexia progression..............................41 

Figure 2.8.Changes in liver metabolic and anabolic markers with cachexia            

progression .......................................................................................................................42 

 

Figure 2.9. Liver inflammatory signaling with cachexia progression .............................43 

Figure 2.10. Schematic diagram describing the molecular signaling associated with 

cachexia progression in the liver......................................................................................44 

 

Figure 3.1. Effect of PDTC treatment on tumor number and distribution in the cachectic 

ApcMin/+ mouse .................................................................................................................66 

 

Figure 3.2. Effect of PDTC treatment on the body mass in the wild type and cachectic 

ApcMin/+ mouse .................................................................................................................67 

 

Figure 3.3.  Effect of PDTC treatment on liver weight, glycogen and lipid content .......69 

Figure 3.4. Effect of PDTC treatment on liver metabolic signaling ................................70 

Figure 3.5. Effect of PDTC on systemic and liver inflammation ....................................71 

Figure 3.6. Effect of sFcgp130 treatment on tumor number and distribution in the cachectic 

ApcMin/+ mouse .................................................................................................................73



www.manaraa.com

` 

xiii 
 

 

Figure 3.7. Effect of sFcgp130 treatment on the body mass in the wild type and cachectic 

ApcMin/+ mouse  ................................................................................................................74 

 

Figure 3.8. Effect of sFcgp130 treatment on liver weight, glycogen and lipid content...77 

Figure 3.9. Effect of sFcgp130 treatment on liver metabolic signaling...........................78 

Figure 3.10. Effect of sFcgp130 on systemic and liver inflammation .............................79 

Figure 4.1. Schematic Experimental Design ....................................................................96 

Figure 4.2. Effect of Polymyxin treatment on tissue mass in the ApcMin/+ mice ..............97 

Figure 4.3. Effect of Polymyxin treatment on liver metabolic signaling .........................98 

Figure 4.4. Effect of Polymyxin treatment on hepatic inflammation ..............................99 

Figure A.1: Effect of Nor/Amp treatment on tissue mass in the ApcMin/+ mice ...............116 

Figure A.2: Effect of Nor/Amp treatment on liver metabolic signaling ..........................117 

Figure A.3: Effecto of Nor/Amp treatment on hepatic inflammation .............................119 

 

  



www.manaraa.com

` 

xiv 
 

LIST OF ABBREVIATIONS 

 

AIDS ...................................................................... Acquired Immunodeficiency Syndrome 

AKT ..........................................................................................................  Protein Kinase B 

B6 ...........................................................................................................................  C57BL/6 

BW ................................................................................................................... Body Weight 

C – 26 ........................................................................................  C26 colon adenocarcinoma 

COPD .................................................................  Chronic Obstructive Pulmonary Disorder 

EDL ..........................................................................................  Extensor Digitorum Longus 

ELISA ....................................................................  Enzyme Linked Immunosorbent Assay 

ERK............................................................................  Extracelluar signal regulated kinases 

GAPDH ..........................................................  Glyceraldehyde 3-phosphate dehydrogenase 

Gas/Gastroc ................................................................................................... Gastrocnemius 

IL – 6 ................................................................................................................  Interleukin 6 

JNK ..............................................................................................  c-Jun N-terminal Kinases 

LLC .........................................................................................  Lewis Lung Cell Carcinoma 

LPS ........................................................................................................  Lipopolysaccharide 

MAPK ..........................................................................  Mitogen Activated Protein Kinases 

MCP – 1 ........................................................................ Macrophage Chemotactic Protein 1  

Min ...........................................................................................................................  ApcMin/+ 



www.manaraa.com

` 

xv 
 

mTOR ...............................................................................  mechanistic target of rapamycin 

NF – κB ..........................................................................................  Nuclear factor Kappa B 

Nor/Amp .......................................................................................... Norfloxacin/Ampicillin  

PBS .............................................................................................  Phosphate buffered saline 

PDTC ........................................................................................ Pyrrolidine dithiocarbamate 

PEPCK ............................................................................ Phosphoenolpyruvate carboxylase 

PFK .....................................................................................................  Phosphofructokinase 

Pla ............................................................................................................................Plantaris 

PVDF ............................................................................................... Polyvinylidene fluoride 

Quad .................................................................................................................... Quadriceps 

RNA ............................................................................................................Ribonucleic acid 

SDS .................................................................................................. Sodium dodecyl sulfate 

sFcgp130 ................................................................ soluble glycoprotein 130 fusion protein 

sIL-6R .................................................................................................  soluble IL-6 receptor 

Skmgp130KO ........................................................... skeletal muscle gp130 knockout mice 

Skm-gp130r........................................ skeletal muscle specific glycoprotein 130r knockout 

Sol ..............................................................................................................................  Soleus 

STAT3..................................................Signal Transducer and Activator of Transcription 3 

TA ............................................................................................................... Tibialis Anterior 

TBST .................................................................................. Tris Buffered Saline and Tween 

TNFα ....................................................................................... Tumor Necrosis Factor alpha



www.manaraa.com

` 

xvi 
 

V ...................................................................................................................................  Volts 

WT ......................................................................................................................  Wild Type



www.manaraa.com

` 

1 
 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

Cachexia is a multifactorial syndrome diagnosed in patients with chronic diseases like 

AIDS, COPD and cancer via the unintentional loss of body weight1-3. No treatment is 

currently approved for cachexia due to its multifactorial nature caused by various chronic 

diseases3, 4. However, chronic systemic inflammation persists in all patients that exhibit 

cachectic symptoms even though the components of the immune response may vary. 

Recent studies with cancer cachexia have shown that degradation of muscle and fat loss 

during cachexia is a result of a hypermetabolic state that needs a constant supply of energy5. 

This energy is obtained from the breakdown of fat and muscle in the body and used to feed 

the elevated basal metabolic rate (due to the tumors) and a highly stimulated immune 

system (activated to fight the chronic disease)1, 5. Cachectic patients thus also display an 

enlargement of the visceral organs like spleen and liver, the organs responsible for immune 

activation and maintenance of homeostasis respectively6,7. The observed 

hepatosplenomegaly not only induces a hypermetabolic state but also leads to activation of 

the innate acute phase response by the liver. Production of acute phase proteins is extremely 

energy expensive but is essential to sustain the hypermetabolic state by breaking down 

muscle for metabolic and immune functions8. Many anti – inflammatory therapies being 

tested in clinical trials study its effect on attenuation of fat mass, and endpoint variable,
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 but not many studies look at the effect of these treatments on the liver, which governs the 

metabolic responses in the body. There is clearly a need to study liver function during 

cachexia progression and develop therapies that can act on the liver to alleviate its 

hypermetabolic and immune responses and to see if these responses would translate into 

attenuation of muscle and fat loss with cachexia.  

The liver is known to perform over 500 physiological functions including the regulation of 

glucose and lipid mechanism, glycogen storage, production of acute phase proteins, 

cholesterol synthesis, filtration of toxins from the portal blood and metabolism of drugs in 

the system amongst other things9, 10. It also has a tremendous capacity to regenerate and 

making it one of the more resistant organs in the body. However a disruption of liver 

function due to diseases like cancer or chronic alcohol intake can lead to a severe systemic 

effect with fatigue, disruption in glucose homeostasis, bilirubin accumulation, anemia 

etc11. Hepatocarcinomas lead to hepatocyte proliferation, hepatic inflammation and liver 

fibrosis compromising liver functions, making it one of the diseases with lowest prognosis 

rates. If not detected and treated in time the disease is usually fatal in 3 - 6 months12, 13. 

Hepatocellular carcinomas are hence aggressively researched for therapies. However, very 

little is known about the secondary effect of tumor on liver function. A few recent studies 

have established that liver plays a role in cachexia development alteration in lipid 

metabolism and production of acute phase proteins due the systemic effect of tumor related 

pro – inflammatory and hypermetabolic response on the liver14, 15. However, these studies 

are performed in severely cachectic mice that already have substantial weight loss. The 

model system used for the studies is the C26 model of cancer cachexia that develops an IL 

– 6 dependent cachexia over a period of two weeks, limiting our ability to track the liver 
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during cachexia progression15, 16. Establishing a time course in the liver with cachexia 

progression is very important for development of effective therapies with minimal side 

effects.  

The ApcMin/+ model of cancer cachexia is an excellent model to develop cachexia 

progression as it transitions from a cancerous but non – cachectic state (12 weeks of age) 

to a pre – cachectic state (14 weeks of age) to a severely cachectic stage (20 weeks of age). 

The ApcMin/+  a colon cancer mouse model that mimics a various symptoms of cancer 

cachexia like gradual and progressive weight loss, splenomegaly, endotoxemia and an IL-

6 dependent loss of muscle mass16, 17. The ApcMin/+ mouse starts tumor development at 

around 4 -5  week of age and have the maximum tumor number by the time it becomes 12  

week old. However cachexia development is only seen once the tumors start to grow in 

size post  12 weeks of ages and by 20 weeks of age the ApcMin/+ intestine is riddled with 

approximately 80 tumors and a majority of these being more than 2mm in diameter16. The 

mouse elicits a systemic response to fight these tumors as we see elevated levels of plasma 

MCP – 1 in the mice starting 12 weeks of age and an increase in plasma IL – 6 levels from 

14 weeks of age. Plasma concentration of both these cytokines is highly elevated in the 

severely cachectic mice18, 19. Loss of fat and muscle mass is induced by IL – 6 with muscle 

mass loss corresponding to serum IL – 6 in the male ApcMin/+ mouse.  

Inhibition of plasma IL – 6 by administration of an IL – 6 receptor antibody is attenuates 

muscle mass loss by inhibiting pathways inhibition of protein degradation in the ApcMin/+ 

muscle. This effect of IL – 6 on muscle wasting was duplicated in the skm – gp130 

knockout mouse that attenuated muscle mass loss in the LLC model of cancer cachexia20. 

However muscle protein content is the ratio of protein synthesis to degradation and loss of 
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protein synthesis rates are suppressed in the cachectic muscle and are not attenuated by 

inhibition of IL – 6. However recent studies have shown that cachexia induced muscle 

protein synthesis inhibition can be attenuated by administration of PDTC, a drug known to 

inhibit both NF – kB and STAT - 321. Exercise and anti – inflammatory supplements like 

quercetin have also been implicated in inhibition of muscle mass loss, but interestingly 

quercetin combined with exercise is detrimental to the cachectic ApcMin/+ mice 

(unpublished data) 22. Suppression of immune response through inhibitors can thus interact 

with and impede normal physiological responses. There is therefore a need to specifically 

inhibit the detrimental immune response and preserve the beneficial arm of any immune 

response. For example, complete inhibition of the acute phase response protein in the liver, 

or systemic inhibition of haptaglobin in the ApcMin/+ mouse are detrimental and reduce 

survival rate23. Similarly complete inhibition of IL – 6 responses could blunt the beneficial 

effects of exercise on cachexia progression. Hence apart from establishing a time course 

for cachexia development this study also look at specific anti – inflammatory therapies that 

can modulate specific arms of the immune response mounted in the ApcMin/+ mouse in 

response to tumor growth. We thus use the IL – 6 trans – signaling inhibitor, a fusion 

protein for the soluble IL – 6 receptor (sFcgp130), that can specifically block the pro – 

inflammatory effects of IL – 6 leaving the classical signaling intact and an antibiotic 

treatment24, to block the endotoxin mediated arm of systemic inflammation in the severely 

cachectic ApcMin/+ mouse. 

IL – 6 is classically defined as pleiotropic cytokine, which can have both beneficial and 

detrimental effects. Acute IL – 6 exposure is been shown to be beneficial for regeneration 

and growth. However, chronic IL – 6 is often detrimental leading to muscle mass and fat 
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loss and insulin resistance with cachexia. Fortunately it recent studies have shown that the 

source of chronic IL – 6 as seen during cachexia as well as its functional mechanism is 

different from the classical IL – 6 signaling that aids regeneration and growth25, 26. Classical 

IL – 6 signaling as seen with exercise attached to the IL – 6 receptor in the muscle and 

dimerizes with its beta receptor gp130 to initiate signaling. IL – 6 trans – signaling however 

is secreted by immune cells or the tumor microenvironment and can bind to the soluble IL 

– 6 receptor present in the serum. The soluble IL – 6 – IL 6R complex and then bind to any 

organ as the beta receptor gp130 is expressed ubiquitously in all tissues. The soluble IL – 

6 signaling thus has more far reaching effects on organs that are generally protected for IL 

– 6. The trans – signaling response has been recently identified as the pro – inflammatory 

arm for IL – 6 signaling and the liver is known to be a major contributor of the soluble IL 

– 6 receptor in response to systemic inflammation. It would thus be interesting to study if 

inhibition of the trans – IL – 6 signaling attenuates liver function with cachexia 

progression27. 

Cachectic patients sometimes show elevated levels of plasma endotoxin during the late 

stages of cancer. ApcMin/+ mouse mimics this effect as severely cachectic mice show 

elevated levels of plasma endotoxin corresponding with an increase in gut permeability, 

implicating gut bacteria as the primary cause of elevated endotoxin levels16.  We thus 

hypothesize that increased gut permeability in the ApcMin/+ mouse allows the bacterial 

endotoxin to leak in to the body cavity and plasma. Upregulation of endotoxin in a 

chronically elevated system is detrimental and hence we hypothesize that inhibition of this 

adjunct arm of inflammation in the ApcMin/+, could improve survival and attenuate cachexia 
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progression. Furthermore, the liver is implicated in endotoxin clearance from the blood and 

but if elevated endotoxin levels in the ApcMin/+ blood alter liver function is not known. 

In summary, the liver governs the metabolic process in the body and can also be implicated 

in sustenance of the muscle degrading acute phase response in a hypermetabolic state. But 

it is unclear if liver signaling in terms of metabolic, inflammatory and protein synthesis is 

affected during cachexia progression in the ApcMin/+ mouse. Further it is known that 

inhibition of partial inhibition of plasma IL-6 attenuates muscle mass loss in the ApcMin/+   

by inhibition of muscle degradation pathways, without rescuing the protein synthesis arm. 

However, PDTC, a global inhibitor of STAT-3 and NF – kB is known to attenuate muscle 

protein synthesis inhibition in the skeletal muscle but its effect on liver function are yet 

unknown21.   It would thus be interesting to see if PDTC can enhance liver protein turnover 

in the ApcMin/+ mouse, and if this would be beneficial in a chronic hypermetabolic state. 

Lastly, this study recognizes the complexity and necessity of immune response elicited 

during cachexia and aims to target specific arms of the immune system to manage the 

exacerbated immune response seen the severely cachectic ApcMin/+ mice. We thus propose 

to inhibit IL – 6 trans signaling and endotoxin signaling during cachexia progression and 

study its role on liver function in the cachectic mouse. ApcMin/+ mice will be introduced into 

the study during their non – cachectic state and monitored till sacrifice at the severely 

cachectic stage. Drug targeting the IL – 6 pathway would administered in moderately 

cachectic mice, while antibiotic administration for the endotoxin levels will be initiated in 

non – cachectic mice. Apart from liver function markers, body weight loss, muscle/fat mass 

loss and attenuation of visceral organ hypertrophy will be used as evaluate the effective of 

the treatment.   
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1.2 REVIEW OF LITERATURE 

1.2.I WHAT IS CACHEXIA? 

Derived from the Greek word kachexia (kakos = bad; hexis = state), Cachexia in 

terms of modern medicinal terms stands for a malnourished state leading to the loss of 

peripheral organs like fat and muscle and hypertrophy of internal organs like spleen and 

the liver accompanied by edema. Cachexia is often the result of chronic inflammatory 

diseases like cancer, AIDS, congestive heart failure, end stage renal failure, rheumatoid 

arthritis, COPD and other conditions28.  

Chronic diseases like cancer at their end stage are often “autocannibalistic” 

meaning that the underlying condition, in this case the tumor, leads to the degradation of 

peripheral organs like fat and skeletal muscle. The tumor also elicits systemic effects on 

visceral organs with increased gut permeability16, splenomegaly, and hepatomegaly 6, 29, 

hyperlipidemia, enlarged mesenteric lymph nodes16 and an ever increasing tumor burden. 

Hypertrophy of the visceral organs along with increasing tumor burden creates a 

hypermetabolic state in the patient. The Resting Energy Expenditure (REE) in cancer 

patients is heightened both because of the tumor and the hypertrophy of the visceral 

organs6. Peripheral tissues like adipose and skeletal muscle are broken down to sustain this 

hypermetabolic state, often compounded by a simultaneous onset of anorexia30.  

Cancer cachexia is a multifactorial syndrome, which can be attributed to a sustained 

immune response mounted by the body to fight of the tumor. But as the tumor burden 

increases, the sustained chronic inflammation alters signaling in all the major tissues in the 

body, creating a secondary condition that is as detrimental as the disease itself. Chronic 
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inflammation manifests itself in the form of a sustained inflammatory response with 

elevated levels of  cytokines like IL – 6, TNF – alpha, IL -1 beta, MCP-1, IFN-γ , IL -12  

These cytokines trigger an inflammatory cascade which affects function in most organs, 

like the synthesis of acute phase response proteins in the liver and skeletal muscle, 

suppression of protein synthesis in skeletal muscle while upregulation of the same in the 

liver, activation and proliferation of immune cells in the spleen, protein degradation in the 

muscle, suppression of appetite by manipulation of leptin levels etc2, 31.  

  Therapeutic interventions like hypercaloric diets, exercise and treatment with anti 

– inflammatory antibodies often curtail protein degradation, but rarely rescue protein 

synthesis. Treatment of with anabolic steroids or growth hormones have been shown to 

redirect the excess amino acid to the protein synthesis pathway, but this is often increases 

the mortality rate in cachexia patients as it cuts off the amino acid supply to immune 

response leading to proliferation of the underlying disease. 28 

With the advent of modern medicine to treat cancer, efforts need to be made to 

develop potent techniques to deal with cachexia, to ensure better quality of life for cancer 

patients and survivors. Modern advances like chemotherapy, radiation and surgery 

combined with immunotherapies and nutrition supplementation, have significantly 

prolonged life expectancy of cancer patients. Surviving with cancer is now a reality, but is 

often riddled with poor quality of life due to severe loss of fat and skeletal muscle in 

patients. Treating cachexia ensures quality of life and thus it’s essential to explore therapies 

that could treat this multifactorial systemic syndrome.  
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1.2. II LIVER DURING CACHEXIA 

Liver is located in the abdominal cavity, below the diaphragm on the right hand 

side. The liver is has two main lobes, which are further divided into thousands of lobules. 

The liver receives blood supply from two main sources: 1) hepatic artery, 2) hepatic portal 

vein. Filtering of this blood is one of the main functions of the liver. The liver at any given 

point contains 13% of the body’s blood supply.  The liver thus functions as a major 

detoxifying organ of the body and is the first site to intercept pathogen in the blood15, 32. 

The liver is lined with resident macrophages known as Kupffer cells, which get activated 

in response to an invading pathogen, preparing the liver and the body to fight infection, 

mainly by the production of cytokines, reactive oxygen species, acute phase proteins and 

their secretion in the blood stream. Acute phase proteins activate the immune system to 

fight the invading pathogens. The liver also produces bile which helps breakdown of 

ingested fats in the small intestine for further utilization by the body. The liver also 

monitors the breakdown of various drugs and nutrients in the body. It also converts excess 

glucose blood glucose to glycogen for further storage, and stores iron by processing 

hemoglobin and regulate blood clotting by production of prothrombin.  

During cancer cachexia, the tumors are known to proliferate under pro – 

inflammatory conditions leading to wasting seen as a result of skeletal muscle and fat 

degradation. This loss of muscle indicates a hypermetabolic state, wherein the energy 

demands of the body at rest increase tremendously. One of the reasons for this increase in 

energy demand can be attributed to gluconeogenesis by activation of Cori’s cycle. The 

tumor is known to produce lactic acid which accumulates in the blood stream. As the liver 

filters all the blood from the body, lactic acid from the blood is converted to glucose by the 
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consumption of ATP, via the Cori’s cycle. Chronic activation of Cori’s cycle could thus 

alter liver function during cachexia33,15. Chronic inflammation is also responsible for 

production of acute phase proteins (APR) in the liver. Production of APPs requires free 

amino acid for its production. APPs are known to trigger and sustain an inflammatory 

response in the by activation of STAT3 and further activation of muscle and fat. The liver 

thus is a site of extensive energy consumption during cancer cachexia, by aiding the 

sustenance of inefficient energy cycles8. 

1.2.III LIVER AND THE PRO – INFLAMMATORY CYTOKINE IL-6 

IL – 6 is a pleiotropic cytokine and is implicated in a number of process like muscle 

growth and hypertrophy34, muscle atrophy 35, 36, activation and stimulation of immune 

system37, production of acute phase proteins8, wound healing and repair, gut 

permeability16, insulin resistance38, dysregulation of serum triglyceride levels15 etc.  IL – 6 

signaling proceeds via the IL – 6 receptor (IL – 6R) which upon binding to IL – 6 binds 

and dimerizes the gp130 receptor. The gp130 receptor is an ubiquitously expressed 

secondary receptor that can be activated by the entire IL – 6 family of cytokines like LIF, 

OSM, CNTF and also by IL -27 39, 40. Once activated the receptor can activate Janus Kinase 

(JAKs) finally leading to the activation of STAT3. STAT 3 activation by IL – 6 can lead 

to the secretion of acute phase proteins in both skeletal muscle and liver. STAT3 is 

measured as a marker for inflammation and inhibition of STAT 3 can lower inflammation 

36, 37,8. Other than STAT 3, IL – 6 signaling is also known to activate ERK via gp130 

dependent activation of the Ras, Raf pathway. Gp130 via activation of Gab1 can also 

activate PI3K leading to activation of mTOR and Akt41. The varied functions of IL – 6 thus 

can be explained by the multiple signaling cascades it can activate, but there also exists 
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evidence that acute IL – 6 stimulation is beneficial as opposed to chronic IL – 6 stimulation 

which proves to be atrophic36.  The pleiotropic nature of IL – 6 can also be attributed to the 

classical vs trans IL – 6 response. IL – 6 receptor is not abundantly found on all tissues, 

but cases of infection and chronic diseases like cancer, the IL – 6 receptor on immune cells 

and visceral tissues like liver is shed into the blood stream as soluble IL – 6 receptor (sIL-

6R). sIL -6 receptor can bind IL – 6 in plasma and then aid the dimerization of the gp130 

receptor on various cell types. As discussed earlier, since the gp130 receptor is ubiquitously 

expressed, the extent of IL – 6 signaling is broadened and are more damaging. Recent 

studies conducted on the topic indicate that the IL – 6 trans-signaling is pro – inflammatory 

in nature, while the classical signaling pathway is anti – inflammatory in nature. Due to 

such pleiotropic nature, the effects of IL – 6 in cancer, cachexia and on liver have proved 

to be often contradictory and interesting.  

 Secretion of IL – 6 in response to infection or tumor is known to elicit an Acute 

Phase Response by the liver. Chronic IL – 6 stimulation suppresses the production of 

normal liver proteins like albumin and increase the production of acute phase proteins alike 

α2 – macroglobulin, fibrinogen, haptaglobin etc. 31Acute phase proteins are additive to 

systemic inflammation seen with chronic inflammatory diseases8.  

 IL – 6 can  upregulate muscle expression of TLR 4 and TLR2 leading to insulin 

resistance in human subjects42. Insulin resistance is observed in severely cachectic Apc Min/+ 

mice and is attributed to inhibition of glucose uptake by skeletal muscle, as the body tries 

to divert the energy source to more metabolic active tissues like the liver, spleen and tumor 

itself. Indeed IL – 6 stimulation of hepatocytes has been shown to upregulate glucose 

production in hepatocytes43. IL – 6 treatment is mice can also reduce lipid to glycogen 



www.manaraa.com

` 

12 
 

ratio, indicating either increased lipid synthesis or depleted glycogen content. Considering 

lipolysis is elevated during cachexia, IL – 6 induced cachexia probably increases lipolysis 

rather than depleting glycogen levels44.  Level of mitochondrial transport protein CPT I 

and II is downregulated with cancer. But the data on IL – 6 induced insulin resistance is 

contradictory with certain studies indicating that IL 6 null mice are similar to WT mice in 

terms of plasma glucose, NEFA, and hepatic glycogen content.43 

 IL – 6 is known to have differential atrophic effects in males and females with 

female mice being obtuse to the deleterious effects of muscle wasting as compared to men. 

This is often attributed to the presence of  to the interaction of estrogen receptor and the 

cytochrome P 450 system in the liver 45, 46. 

 Various inhibitor, overexpression and knockout studies have been performed in 

both humans and mice to understand the role of IL – 6 during chronic diseases. Inhibition 

of chronic inflammatory response has been shown to be beneficial in at the signaling levels, 

with IL – 6 RA attenuating muscle weight loss by inhibition of muscle protein degradation 

in the ApcMin/+ mouse, but complete loss of IL 6 from the Min mouse lead to insulin 

resistance in older mice. IL – 6 has been shown to have both pro –survival and 

inflammatory effects due to activation of Akt and STAT3 respectively. Also its role in liver 

appears to be crucial with production of acute phase proteins, interaction with the CYP 

system to affect sex dependent atrophic signaling and its influence on hepatic glucose and 

lipid metabolism. Thus it would be interesting to study the effect of IL – 6 on liver function 

with cachexia progression.  
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1.2.IV ENDOTOXIN AND LIVER:  

Endotoxin levels in the blood are often seen to be increased in a number of diseases 

like alcoholic liver disease, sepsis, or CCL4 induced liver injury. LPS can further 

exacerbate the injury by stimulation of Kupffer cells in the liver. Increased endotoxin levels 

can be leaked into the plasma from the gut due to increased gut permeability and via the 

portal vein. Kupffer cells in the liver are derived from the monocytic lineage and express 

the TLR 4 receptor on the surface47 . Activation of Kupffer cells is known to trigger ROS 

production leading to liver injury of the parenchymal cells.  Alcohol induced liver injury, 

leads to a hypermetabolic state with increased oxygen consumption but decreased liver 

glucose production due to activation of PGE2 by Kupffer cells. Endotoxin due to increased 

gut permeability has been shown to be the primary cause for Kupffer cell activation in the 

liver. Pretreatment with antibiotics protects endotoxin induced Kupffer cell activation and 

prevents liver injury48.  Destruction of Kupffer cells by GdCL3 treatment protects the 

hepatocyte from LPS induced injury. Kupffer cells thus play a paradoxical role in LPS 

regulation in the liver. They are responsible for clearing out the endotoxin entering the liver 

via the portal blood supply, but high concentration of LPS in the blood leads to ROS 

production in these cells leading to liver injury49.  Increased endotoxin levels and endotoxin 

mediated injury can inhibit bile secretion 50 and affect hepatocyte blood flow .  

TLR 4 levels are increased in response to endotoxin on hepatic tissue. All cell types 

in the liver – hepatocytes, Kupffer cells and Hepatic Stellate cells are known to express 

TLR 4 but in very low levels as compared to other tissue. The expression of TLR 4 on these 

tissues rises with exposure to LPS, sensitizing the liver to foreign antigens. The co – 

receptors for TLR 4 like MD2 and CD14 follow a similar trend as TLR 4. Once activated 
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TLR 4 can lead to activation of NF – kB and AP – 1 downstream. LPS uptake via 

hepatocytes leads to secretion of acute phase proteins, but this upregulation is weak as 

compared to acute phase production by IL – 6. LPS can also lead to secretion of IL – 6, 

MCP – 1 and TNF – alpha in hepatocytes. Kupffer cells are the resident macrophages in 

the liver and activation of Kupffer cells leads to production of IL -6, TNF – alpha, IL – 1 

and ROS. Kupffer cells are the primary mediators of pro – inflammatory cytokine and 

chemokine secretion following LPS exposure. Activation of Kupffer cell can also prime 

the allogenic T cell activation. HSC are known to be sensitive to very low levels of LPS 

leading to secretion of a host of pro – inflammatory cytokines and chemokines. TLR4 

dependent activation of HSC activates pro – survival signals making these cells apoptosis 

resistant. As HSC are ECM producing cells in the liver, this can lead to liver fibrosis51.  

1.2.V ANTIBIOTIC TREATMENT AND LIVER:  

Antibiotics are known for their ability to specifically target bacterial proliferation 

and survival. All antibiotics use specific enzymes and proteins synthesized by the bacterial 

genome. This allows for specific targeting of the infectious species and spares the 

mammalian cells. Most antibiotics thus can target a group of similar bacterial species. 

Broadly, bacteria can be divided in to 2 classes – Gram positive and Gram negative 

bacteria. The Gram negative bacteria have a thick coat of LPS surrounding their outer cell 

wall. Endotoxin or LPS is toxic when found introduced into the blood stream and elicits a 

host of pro – inflammatory processes. Gram positive bacteria on the other hand have a very 

thin or no LPS coat around them. Such bacteria are still toxic and are recognized as foreign 

antigen by the body. Antibiotics have been developed against both gram positive and gram 

negative bacteria, while some antibiotics can target both gram positive and gram negative 
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bacteria together. Polymyxin is an example of an antibiotic targeting the Gram negative 

bacteria. Polymyxin structure allows it to bind to the Lipid A component of LPS and 

puncturing holes in the bacterial cell wall 52, 53. Norfloxacin on the other hand targets both 

Gram positive and Gram negative bacteria by inhibiting the activity of DNA replication 

enzyme DNA gyrase and is known as a broad-spectrum antibiotic54.  Ampicillin is another 

common example of broad spectrum antibiotic and acts a substrate for one of the key cell 

wall forming enzyme in bacteria.  

 Antibiotic treatment to prevent alcohol induced liver injury have proved to be 

beneficial in lowering serum markers of liver injury like AST and in restoring oxygen 

tension on surface of the liver55. Antibiotic treatment is also known to suppress Kupffer 

cell activation the phenotype responsible for inducing liver injury51. 
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CHAPTER 2 

 

 

ROLE OF CACHEXIA PROGRESSION DURING LIVER FUNCTION 

 IN THE ApcMin/+
 MICE

1 

                                                           
1 Narsale, A. et. al. 2014 Role of Cachexia Progression During Liver Function in the 

ApcMin/+ mice, To be submitted to Biochemica et Biophysica Acta 
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2.1 ABSTRACT 

The ApcMin/+ (Min) mouse exhibits a gradual loss of muscle and fat due to a chronic 

inflammatory, hypermetabolic and energy deficient state.  Since liver governs the systemic 

energy demands by regulating glucose and lipid metabolism, it is likely that liver function 

is altered in the Min during cancer and subsequent cachexia progression (CP). The purpose 

of this study was to examine if cancer and the progression of cachexia alters liver function 

related to ER stress, inflammatory, metabolic and protein synthesis signaling. The effect 

of cancer without weight loss was examined in wild type and weight stable Min.  CP was 

examined in weight-stable, pre-cachectic and severely cachectic Min mice. Livers were 

analyzed for morphology, glycogen content, ER stress, inflammation, and metabolic 

changes. Cancer induced the expression of ER stress markers Bip and IRE-1α, and 

inflammatory intermediate p-STAT3. While gluconeogenic enzyme PEPCKmRNA 

expression was suppressed by cancer, there was no effect on glycogen content or 

Akt/mTOR signaling. CP depleted liver glycogen content and increased mRNA expression 

of glycolytic enzyme PFK and gluconeogenic enzyme PEPCK. Related to inflammation, 

CP further increased STAT3 phosphorylation but suppressed p-65 and JNK activation. 

Interestingly, CP suppressed upstream ER Stress markers Bip and IRE-1 α, while 

upregulating the downstream target CHOP. Cachectic mice exhibit a dysregulation of 

protein synthesis signaling, with an induction of p-mTOR, despite a suppression of Akt  

and S6 phosphorylation. Our results demonstrate liver dysfunction with CP is a result of 

chronic ER stress, disrupted protein synthesis signaling and suppressed hepatic 

inflammation in the Min mouse. 

Keywords: Liver, IL – 6, acute phase response, protein synthesis, ER stress 
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2.2. INTRODUCTION 

Cachexia is a wasting syndrome observed during the later stages of chronic diseases 

like cancer, AIDS, COPD 1,  and greatly hampers quality of life in patients undergoing 

remission. No pharmacological treatments are currently approved for cachexia56 primarily 

because of its multifactorial and systemic nature, which limits the effectiveness of a single 

drug or therapy. It is therefore important to study the effect of cachexia progression not 

only in terms of loss of body mass, evident only in advanced stages of the disease, but also 

on systemic events that initiate and lead to wasting. Cachectic patients, along with an 

evident but gradual loss fat and muscle mass, also suffer from a host of underlying ailments 

such as chronic systemic inflammation, insulin resistance, increased gut permeability, 

anemia, anorexia, splenomegaly, hypermetabolism5, 57-61. Interestingly, tough 

characterized as a wasting syndrome, the visceral organs such as heart, spleen, liver 

maintain mass or even hypertrophy with cachexia1.  

 

Liver hypertrophy seen during cachexia57 is particularly intriguing since nutrient 

depletion and increased energy demands as observed during fasting62 and infection depletes 

liver glycogen stores causing a decrease in liver mass63, 64. In fact, liver hypertrophy is 

speculated to contribute towards cachexia progression and severity by contributing to 

elevated resting energy expenditure in cancer patients 57, 65. Liver governs the systemic 

metabolic rate by regulating pathways regulating glucose and fat utilization, transport, 

storage and breakdown. Liver is also known to produce the acute phase proteins (APPs) in  

response to an inflammatory stimulus that can lead to degradation of muscle into amino 

acids 14, 66. Thus alteration in liver function can potentially trigger a host of ailments 
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associated with cachexia including loss of muscle mass. It would therefore be advantageous 

to study the role of liver in cachexia progression.    

 

   Elevated pro – inflammatory cytokines during cachexia are known to initiate 

lipolysis 67, muscle wasting19 and affect glucose metabolism 17, 58. Thus, chronic 

inflammation induced cachexia progression, increases metabolic demands placed by the 

tumors and coupled with inadequate nutrition triggers rapid wasting and alters several liver 

functions. The secondary effect of tumor on liver function has been recently examined and 

it has been shown to affect metabolic functions in terms of glucose and lipid metabolism 

in the liver 68. A novel molecule TSC22D4 has been implicated in cachexia related body 

weight loss in the C-26 adenocarcinoma model 69. However the effect of cachexia 

progression on liver function is not well understood and could impact patient survival 1, 70. 

The liver is known to perform around 500 physiological functions; but since cachexia is 

primarily characterized by chronic inflammation, loss of body mass, altered regulation of 

protein turnover, metabolic disorders and elevated levels of cellular stress, liver function 

was defined by these markers, for the purpose of this study.  

 

 Current animal models for cachexia mimic varied subsets of cachectic conditions 

to study the effect of cachexia and efficacy of treatments on attenuation of muscle and fat 

loss in these animals. Recent studies with the C-26 tumor implant model of cachexia, have 

shown that cachexia induces an alteration in liver VLDL profile 69 and an induction of 

acute phase response (APR) in the muscle and the liver leading to muscle loss14. Tumor 

implantation models induce a rapid rate of weight loss; with mice losing close more than 
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20% of their body weight in over a one week period71, making it difficult to study 

mechanisms involved in cachexia progression.  The ApcMin/+ mouse on the other hand, 

displays a gradual weight loss spanning approximately 6 weeks. While tumor development 

is initiated at 4 weeks of age72, cachexia initiation is not seen until after 13 weeks of age 

and a severely cachectic phenotype is seen only at 18 – 20 weeks of age59. The gradual 

transition from a weight stable cancer state via a pre – cachectic to a severely cachectic 

state, correlates with plasma IL – 6 and total tumor burden73, making the ApcMin/+ mouse 

an ideal model to study cachexia progression. Increasing tumor burden corresponds to 

increased levels of MCP-1 and IL – 6 in the male ApcMin/+ mouse 19, 59, 72, 74. IL – 6 levels 

correspond to muscle mass loss in the ApcMin/+ 19.  

 

IL – 6 is also known to activate an acute phase response in the liver and muscle, 

leading to secretion of acute phase proteins like haptaglobin, CRP, which further 

exacerbates the inflammation 14, 60, 75. Severely cachectic mice also have elevated levels of 

endotoxin in the serum, with increased gut permeability in the ApcMin/+ 59, which can also 

affect liver function. The purpose of this study was to examine if cancer and the progression 

of cachexia alters liver function related to inflammatory, metabolic and protein synthesis 

signaling. We hypothesized that cachexia progression would increase liver inflammation 

leading to disruption in liver metabolic functions and inhibit liver protein synthesis. The 

effect of cancer without weight loss was examined in wild type and weight stable ApcMin/+ 

mice.  Cachexia progression was examined in weight-stable, pre-cachectic and severely 

cachectic ApcMin/+ mice. Livers were analyzed for morphology, glycogen content, 

inflammation, and metabolic changes. 
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 2.3 MATERIALS AND METHODS:  

2.3. I ANIMALS:  

All animal procedures were approved by the University of South Carolina’s 

Institutional Animal Care and Use Committee. The mice were housed in a room kept at a 

12:12hr light: dark cycle, with the light cycle starting at 07:00 hrs. The mice were had ad 

libitum access to food (standard chow – Harlan Teklad Rodent Diet, #8604) and water.  8 

week old C57BL/6 and ApcMin/+ mice were introduced into the study and monitored for 

Body weight loss, Food intake and body temperature, throughout the course of the study. 

Following an overnight fast, mice were sacrificed at 12 weeks (non – cachectic, N = 6), 14 

weeks (pre – cachectic N = 6) and 18 – 20 weeks (severely cachectic, N=6). Comparison 

between the WT and non – cachectic group highlights the effect of cancer, while 

comparisons between the ApcMin/+ groups teases out the effect of cachexia progression from 

effect of cancer in these mice. 

2.3. II TISSUE COLLECTION:  

Mice were anesthetized using the ketamine cocktail. Plasma was collected prior to 

tissue collection via blood draws through the retro-orbital sinus. Liver tissue was collected 

during the sacrifice and was snap frozen in liquid nitrogen and stored at - 80⁰C19. Intestine 

segments were isolated, cleaned and cut into 4 equal segments of the small intestine and a 

segment for the colon. These were used to account for tumor burden in the cachectic Apc 

Min/+ mice 19, 59. 
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2.3.III RNA ISOLATION/PCR:  

RNA extraction, cDNA preparation and real – time PCR was performed as 

described previously 76. Briefly, RNA was isolated by homogenizing the liver tissue in 

Trizol (Invitrogen, Cat # 15596), followed by a chloroform/isopropyl alcohol extraction. 

cDNA and RT-PCR assays were performed using reagents purchased from (ABI, Foster 

City, USA). Primers for SOCS-314, Haptaglobin14, PFK77 and PEPCK77 primers purchased 

from IDT (Coralville, IA, USA). Data was analyzed using the comparative cycle threshold 

[Ct] method calculated by the ABI software.   

2.3. IV WESTERN BLOT:  

Western blots were performed as described previously 78. Briefly, a piece of the 

liver was cut, weighed and placed in 10 times the volume of Muller Buffer. The tissue was 

homogenized in the buffer using a glass or glass homogenizer. The resultant homogenate 

was quantified for protein concentration using the Bradford assay. All protein samples were 

diluted to 3ug/µl concentration to aid equal loading on the gel. Homogenates were 

fractionated on SDS – PAGE acrylamide gels (6% - 15%) and transferred overnight onto 

a PVDF membrane. The membrane was Ponceaued following the transfer to ensure equal 

loading. The PVDF membrane was then probed for STAT-3, mTOR, S6, Akt, MMP-2, p-

p65, GAPDH (Cell Signaling Technology, Danvers, MA, USA) gp130 and Albumin (Santa 

Cruz Biotechnology). A corresponding secondary antibody was used along with the 

chemiluminescent agent Quantum ECL (BioExpress, Kaysville, UT, USA) to visualize the 

protein bands. ImageJ (NIH, Bethesda, MD, USA) software was used for quantification of 

the integrated optical density (IOD) for Western blot bands.  
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2.3. V PERIODIC ACID SCHIFF’S (PAS) STAINING:  

Glycogen was stained by using cryosections of the liver tissue and staining them 

with PAS stain79. Briefly, a small piece of liver tissue was mounted on an OCT block and 

sectioned at -16⁰C. The slides were fixed in Carnoy’s fixative for 10 minutes followed by 

30 minute incubation in the Periodic Acid. Slides were then washed with water and exposed 

to Schiff’s reagent for 30 minutes. The slides were counter stained with Hematoxylin, 

dehydrated through alcohol grades and mounted using Permount. The slides were imaged 

the next day using the DP70 Olympus microscope.  

2.3. VI HEMATOXYLIN AND EOSIN STAINING:  

A subset of severely cachectic ApcMin/+ mice were perfused with 4% PFA in PBS. 

Liver was stored in 4% PFA overnight and transferred to a 30% sucrose solution. The 

perfused liver was mounted in a wax block and cut using a microtome. The sections were 

deprafinized and stained with Hematoxylin and Eosin stained, dehydrated using alcohol 

grades. Slides were mounted in the Permount media and imaged using the DP-70 camera. 

2.3. VII STATISTICAL ANALYSIS:  

All statistical analysis was performed using the GraphPad Prism software. A One 

– Way ANOVA was performed to calculate the effect of cachexia with time on the ApcMin/+ 

mice. A Two – Way ANOVA was performed to examine the effect of genotype and 

treatment. Post – Hoc Analysis was performed using the Student-Newman-Keuls test. Pre- 

planned test were performed to determine the effect of ApcMin/+ as compared to WT 

animals. Liver glycogen content, as determined by PAS staining, was analyzed using the 

non – parametric Krushal – Wallis test. Significance was set at p<0.05. 
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2.4 RESULTS 

2.4. I TUMOR BURDEN AND BODY WEIGHT IN APCMIN/+ MICE   

Our lab has worked extensively with the ApcMin/+ model and time course studies 

with the model have established that increased tumor burden correlates to plasma IL – 6 

levels, leading to a IL – 6 dependent body weight loss in these mice73. As previously 

reported, the initiation of weight loss in the ApcMin/+ mouse occurs at 13 weeks of age. 12 

week old ApcMin/+ mice weigh 23 – 24grams which is comparable to a healthy age – 

matched C57BL/6 control 59.  Cachexia is initiated at 13 – 14 weeks of age with pre – 

cachectic mice exhibiting a small but significant, less than 5%, weight loss compared to 

the WT animals. 20 week ApcMin/+ are severely cachectic with a loss of 20% body mass in 

the form of fat and muscle. Cachexia progression is can also be determined by the 

progressive increase in tumor size. It has been reported that, the tumor number does not 

increase significantly from the non – cachectic to severely – cachectic state, but there is a 

distinctive increase in tumor size with increase in cachexia severity 59. Previous studies 

have also reported an increase in tumor diameter from the non – cachectic (<1mm 

diameter) to pre – cachectic (1-2mm in diameter) to severely cachectic wherein majority 

of the tumors are >2mm in diameter 59. The ApcMin/+ liver function is examined using these 

previously classified non – cachectic, pre – cachectic and severely cachectic mice.  

2.4. II LIVER MORPHOLOGY DURING CACHEXIA PROGRESSION  

A subset of WT, non – cachectic and severely - cachectic mice were perfused using 

a fixative and stained with the hematoxylin and eosin stain to determine cachexia 

progression leads to liver pathology.  Severely cachectic mice displayed signs of mild liver 

injury with signs of liver regeneration, and infiltrating liver leukocytes especially in the 
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sinusoids as compared to the C57BL/6 mice. Protein expression of the mitotic marker ERK 

showed no significant difference during the early stages of cachexia but was inhibited in 

severely cachectic mice. On the other hand, the inflammatory and stress marker JNK 

showed no change with cachexia progression in the ApcMin/+ mouse. 

2.4.III LIVER ER STRESS SIGNALING WITH CANCER  

ER stress signaling in the liver was examined in the WT and non – cachectic 

ApcMin/+mice, by probing for the unfolded protein chaperone - Bip/GRP78, and the ER 

stress transducers IRE-1, ATF6 and PERK induced phosphorylation of eIF2. We report 

that Bip/GRP78 and IRE1  was upregulated in the non – cachectic ApcMin/+ mice with 

cancer. Moreover, ATF6 was suppressed while eIF2 and CHOP showed no change in the 

cancer mice with without cachexia (Figure 2).  

2.4. IV LIVER GLYCOGEN CONTENT WITH CANCER 

  Liver glycogen content was determined using PAS staining and quantified using 

morphometry. Non – cachectic mice did not show any decrease in liver glycogen content 

with the cancer (Figure 3).  

2.4. V LIVER METABOLIC AND PROTEIN SYNTHESIS SIGNALING WITH CANCER.  

We examined the expression liver metabolic genes regulating glycolysis (PFK 

mRNA) and gluconeogenesis (PEPCK mRNA) in the non – cachectic ApcMin/+.  We found 

no effect of cancer on PFK mRNA expression (Fig 4a). However, PEPCK mRNA 

expression was significantly reduced by 45% with cancer (Fig 4a). Signaling intermediates 

regulating the protein synthesis signaling were not affected by cancer in the non – cachectic 

mice as measured by phosphorylation of Akt, mTOR and S6. 
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2.4. VI LIVER INFLAMMATORY SIGNALING WITH CANCER  

The mRNA expression of inflammation related signaling was examined. Liver IL 

– 6 and TLR 4mRNA expression was not affected by cancer (data not shown), however, 

there was considerable variability in baseline control measurements with these genes.  

Liver SOCS3 mRNA expression was induced by cancer in non-cachectic mice (Fig 5A). 

The mRNA expression of acute phase proteins haptaglobin and serum amyloid A (SAA) 

was not altered by cancer (Fig 5A). Cancer increased liver STAT3 phosphorylation 

approximately 2-fold (Fig 5B), which coincided with a significant 20% reduction 

(p=0.002) in liver albumin protein concentration. There was a small, but significant change 

in liver MMP2 protein expression (Fig 5B).Cancer did not change liver gp130 protein 

expression, phosphorylated p65 protein expression (Fig 5B), These results demonstrate that 

cancer induces liver STAT3 signaling with a corresponding increase in SOCS3 mRNA 

expression, and a suppression of PEPCK mRNA expression. 

2.4. VII LIVER ER STRESS WITH CACHEXIA PROGRESSION  

To examine the effect of cancer cachexia progression we examined non-cachectic, 

pre-cachectic, and severely cachectic ApcMin/+ mice. We show that cachexia progression 

downregulates expression of Bip/GRP78 and IRE-1, but does not further affect the 

expression of ATF6p50. Expression of the apoptotic marker CHOP is severely upregulated 

in the severely cachectic mice coinciding with the suppression of Bip/GRP78 and IRE1 

(Figure 6).  
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2.4.VIII LIVER GLYCOGEN CONTENT WITH CACHEXIA PROGRESSION  

Liver glycogen content was determined using PAS staining and quantified using 

morphometry. Glycogen stores were severely depleted in the severely cachectic ApcMin/+ 

mice as compared to the non – cachectic and the pre – cachectic mice (Figure 7).  

2.4.IX LIVER METABOLIC AND PROTEIN SYNTHESIS SIGNALING WITH CACHEXIA PROGRESSION 

We examined the expression of liver mRNA’s with cachexia progression in the 

ApcMin/+ mice (Fig 8A). The progression of cachexia induced liver PFK mRNA expression 

11-fold and PEPCK mRNA expression 2-fold (Fig 8A). No difference in either PFK or 

PEPCK gene expression was observed early in cachexia, as pre – cachectic mice were not 

different from non – cachectic mice. A significant inhibition of Akt and S6 phosphorylation 

was observed in the liver with cachexia progression. Interestingly, mTOR phosphorylation 

was upregulated both in the pre – cachectic and severely cachectic ApcMin/+ mice (Fig 8C). 

2.4.X LIVER INFLAMMATORY SIGNALING WITH CACHEXIA PROGRESSION  

IL – 6 and TLR4 mRNA expression was not different from the non – cachectic 

ApcMin/+ mice, but severely cachectic ApcMin/+ mice significantly upregulated TLR4 mRNA 

expression in liver as compared to the WT mice (data not shown). SOCS3 expression did 

not increase further with cachexia progression (Fig 9a). Acute phase gene expression for 

haptaglobin was elevated ~7 fold but expression of  serum amyloid A (SAA) was not 

significantly different from the non – cachectic ApcMin/+ mice (Fig 9A). IL – 6/STAT3 

signaling is a powerful trigger for haptaglobin transcription and upregulation of 

haptaglobin is seen only in severely cachectic, but not in pre – cachectic ApcMin/+ mice.  

Cachexia progression further increased STAT3 phosphorylation, though we did not see a 

change with gp130 and liver albumin protein content with cachexia progression (Fig 9B). 
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Interestingly, cachexia progression suppressed phosphorylation of NF-kB ~ 50% as 

compared to non – cachectic mice and ~25% as compared to pre – cachectic mice, in the 

severely cachectic mice (Fig 9A); this was mimicked by p65’s downstream target MMP-

2, an angiogenic and fibrotic marker, which showed an approximate 90% inhibition in the 

severely cachectic mice (Fig. 9B).  

In summary, ER stress markers are upregulated early with cancer along with an IL 

– 6 independent activation of STAT3 and its downstream target SOCS-3 expression. This 

activation of ER stress markers affects the protein synthesis pathway by inhibiting Akt and 

S6 phosphorylation in the pre – cachectic mice, along with an increase in phosphorylated 

mTOR. Severely cachectic ApcMin/+ mice completely depleted glycogen stores and 

increased transcription of PFK and PEPCK. Cachexia progression increases liver 

inflammatory markers STAT3 and haptaglobin, but suppressed phosphorylation of NF-kB 

and its downstream target MMP – 2. Protein synthesis was further suppressed in severely 

cachectic mice, independent of mTOR phosphorylation. 

2.5 DISCUSSION 

Our study has attempted to tease out the differential role of liver function in a 

cancerous state and in a cancerous state combined with cachexia. We report that liver 

inflammation increases with cachexia progression as seen by upregulation of haptaglobin 

transcription in the liver. Severely cachectic mice deplete liver glycogen stores along with 

upregulation of glycolytic enzyme PFK and gluconeogenic enzyme PEPCK. Liver protein 

synthesis is severely inhibited as seen by suppression of Akt and p-S6, independent of an 

inhibition in mTOR phosphorylation. Interestingly liver fibrosis and angiogenic marker 

MMP-2 is suppressed along with p – NF-B and MAPK expression in the liver, but there 
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is a corresponding increase in the ER stress induced apoptotic marker CHOP. Thus 

cachexia progression is marked by an increase in liver acute phase response, severely 

depleted glycogen stores and inhibition of liver protein synthesis.  

Non – cachectic ApcMin/+ mice have a similar number of tumors as severely 

cachectic ApcMin/+, but these tumors are smaller in diameter 59. And though these tumors 

show do not affect any functional outcomes and body mass; their ability to induce systemic 

stress via Warburg effect and localized intestinal inflammation in the non – cachectic 

ApcMin/+ mouse is highly probable. Correspondingly, we report and increase in ER stress 

markers in the non – cachectic ApcMin/+ mouse, indicating problems hepatic protein folding. 

This increase in the unfolded protein response in the liver could be due to elevated levels 

of plasma MCP-1 which is via activation of the zinc finger protein MCPIP (MCP- 1 

inducible protein) can lead to induction of ER stress18,80. Non – cachectic mice have 

negligible levels of serum IL – 6 73 and no change is seen in the levels of the downstream 

IL-6 receptor, gp130 protein expression. However, we report that cancer exerts secondary 

effects on liver function in the ApcMin/+. There is an IL- 6 independent increase in liver 

STAT-3 phosphorylation and SOCS-3 mRNA expression. Liver acute phase response is 

not induced with cancer alone, as liver haptaglobin levels are comparable to the healthy 

C57BL/6 mice. IL – 10 and other IL – 6 family cytokines like LIF, OSM, IL -11 are known 

to be elevated in the plasma of injectable cachexia models14, 81 and though the presence of 

these cytokines has not been established in the ApcMin/+ mouse, there is a possibility that 

these could play a role in STAT-3 activation in the non – cachectic mice. Increased SOCS3 

at this stage could be a downstream response to upregulated STAT3. Interestingly blocking 

of the IL – 6 pathway is known to induce liver fibrosis by induction of MMP-2 82. The 
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slight induction of MMP – 2 expression by cancer could possibly be the result of SOCS3 

mediated IL – 6 pathway inhibition. Since IL – 6 serum levels are negligible at this stage; 

we explored the possibility of endogenous IL-6 production in the liver by measuring 

mRNA levels of IL -6 and its upstream modulator TLR-4.  However, liver TLR-4 and IL 

– 6 mRNA expression was highly variable, and we speculate that this could be due 

individual variation during the transition to the cancer-induced chronic inflammatory state. 

Tumor burden and IL – 6 levels increase as body weight drastically decreases in 

the ApcMin/+ mouse 59. While decreased body mass can be attributed to loss of fat and 

muscle, total loss is masked by hypertrophy of the spleen and liver in the severely cachectic 

mice. Liver hypertrophy combined with suppressed gluconeogenic signaling due to cancer 

could indicate a metabolic disruption related to glycogen utilization. Interestingly, liver 

glycogen levels were depleted in cachectic mice, but not in weight stable mice with cancer. 

The loss of liver glycogen was accompanied by increased PFK and PEPCK gene 

expression and could indicate upregulated glucose flux related to the hypermetabolic state 

in the cachectic mice. Studies have shown that even an acute inflammatory response is 

enough to inhibit proteins synthesis and deplete liver glycogen as seen during pathogen 

induced inflammation and starvation experiments 63, 64. Irrespective of upregulated STAT-

3 phosphorylation, cancer alone did not alter liver protein synthesis regulation through –

Akt-mTOR-S6. But presence of tumors could possibly induce a Warburg effect increasing 

lactic acid concentrations in the cytosol83, which  could be converted to glucose via Cori’s 

cycle in the liver 84. Increased glycolysis rate and consequent glucose production in the 

liver could be instrumental in hepatic PEPCK mRNA suppression, since upregulation of 

glucose – insulin signaling acts as a negative feedback for gluconeogenesis inhibition 85-88.  
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Cachexia was accompanied systemic and liver inflammation. Severely cachectic 

have increased liver haptaglobin mRNA expression, an acute phase protein regulated by 

IL-6/STAT3 signaling. Liver STAT-3 levels are also upregulated as compared to the non 

– cachectic ApcMin/+, but no further increase in SOCS-3 level is observed. Increased 

inflammatory and hypertrophy response is counterintuitively, accompanied by a 

suppression of the protein synthesis signaling intermediates Akt and S6. But interestingly, 

liver phosphorylated mTOR levels are upregulated in the severely cachectic mice, inspite 

of Akt inhibition and s6 suppression. The expression of fibrotic and angiogenic marker 

MMP-2 is also progressively inhibited with cachexia progression in the ApcMin/+ and can 

be attributed to p-65 inhibition in the ApcMin/+. IL – 6 is known to be protective against liver 

fibrosis, with IL – 6 knockout mice showing increased liver fibrosis and insulin resistance 

upon CCl4 administration 89. But since phosphorylation of NF- B is inhibited in the 

cachectic ApcMin/+ along with a suppression of Akt, could point toward an apoptotic 

phenotype in the liver. NF-B liver knockouts under apoptosis in the face of an immune 

and concavalin-A challenge 90, 91. Endotoxin levels are known to be elevated in the 

cachectic ApcMin/+ sera, along with highly upregulated IL – 6 levels. Thus increased 

inflammatory response coupled with inhibition of the p-65 expression could trigger 

hepatocyte apoptosis in the ApcMin/+ mice. And tough, upregulation of the IL – 6/STAT3 

pathway is known to be pro – survival, with activated STAT3 blocking the effects of FAS 

activation92, these beneficial effects are only observed with an acute bout of IL -693. 

Chronic exposures to IL – 6 can in fact induce apoptosis and lead to liver failure 93.   

Thus the downregulation of survival signals combined with suppression of protein 

synthesis, could point towards an endoplasmic reticulum (ER) stress induced apoptosis. 
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Severely cachectic ApcMin/+ mice upregulate the late ER stress marker CHOP that is known 

to induced apoptosis in cells possibly by suppression of anti – apoptotic protein Bcl -2 and 

Bcl-xL and induction of genes that enhance production of reactive oxygen species94-96.  

In conclusion, liver function severely deteriorates with cachexia progression. As 

compared to non – cachectic cancer mice, the liver in severely cachectic mice is under 

metabolic stress with depleted glycogen and highly upregulated glucose flux. Severely 

cachectic mice display a robust acute phase protein response to the elevated levels of 

IL6/STAT3 signaling. Liver protein synthesis is also inhibited as seen by inhibition of Akt 

and S6, regardless of an upregulation of p-mTOR. An inhibition of both Akt and NF-kB in 

the cachectic liver, points towards a transition of the liver toward an apoptotic phenotype 

with cachexia progression and can be pursued as a future line of enquiry. 
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2.7: FIGURE LEGEND 

Figure 1: Effect of cachexia progression on liver morphology and MAPK signaling 

A) Hematoxlyin and Eosin Staining of liver section for C57BL/6, Non – cachectic and 

severely cachectic Apc
Min/+

 mice. B) Expression of levels of phosphorylated ERK and 

JNK in the liver  

Figure 2: Effect of cancer on ER stress markers. Bip1, IRE-1 and ATF-6 p50 

expression in the liver of non – cachectic Apc
Min/+ 

  

Figure 3:  Effect of cancer liver glycogen stores. A) Glycogen stores as determined by 

PAS staining. B) Morphometry for the PAS stain to estimate glycogen stores in the WT 

and non – cachectic liver 

Figure 4: Effect of cancer on liver metabolic, and anabolic signaling in non – 

cachectic mice. A) Liver mRNA expression of metabolic genes PFK and PEPCK B) 

Protein expression liver anabolic and apoptotic signaling in the non-cachectic mice. 

Values are expressed as SEM ± SE. * denotes significantly different from C57BL/6 

Values are normalized either to the respective total protein for phosphoproteins and to 

GAPDH for non – phosphorylated proteins. (n = 5- 6 per group, p < 0.05) Dotted line 

indicates levels of C57BL/6. Abbreviations: Non = Non – Cachectic Apc
Min/+

;   

Figure 5: Effect of cancer on liver inflammatory signaling in non – cachectic mice. 

A) Liver mRNA expression inflammatory markers B) Protein expression liver 

inflammatory signaling in the non-cachectic mice. Values are expressed as SEM ± SE. * 
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denotes significantly different from C57BL/6 Values are normalized either to the 

respective total protein for phosphoproteins and to GAPDH for non – phosphorylated 

proteins. (n = 5- 6 per group, p < 0.05) Dotted line indicates levels of C57BL/6. 

Abbreviations: Non = Non – Cachectic Apc
Min/+

;  

Figure 6: Changes in liver morphology with cachexia progression. Histological 

evaluation for liver glycogen. Glycogen content severely depleted in the 20 week 

severely cachectic mice and morphometry of PAS staining using ImageJ Values are 

expressed as SEM ± SE. (n = 6- 8 per group, p < 0.05 

Figure 7: Changes in liver metabolic and anabolic markers with cachexia 

progression. A) Liver mRNA expression of metabolic genes PFK and PEPCK B) Protein 

expression liver anabolic and apoptotic signaling with cachexia progression. Values are 

expressed as SEM ± SE. * denotes significantly different from C57BL/6 Values are 

normalized either to the respective total protein for phosphoproteins and to GAPDH for 

non – phosphorylated proteins. (n = 5- 6 per group, p < 0.05) Dotted line indicates levels 

of C57BL/6. Non = Non – Cachectic Apc
Min/+ Sev

 = severely cachectic Apc
Min/+

; 
  

Figure 8: Liver inflammatory signaling with cachexia progression. A) Liver mRNA 

expression inflammatory markers B) Protein expression liver inflammatory signaling 

with cachexia progression. Values are expressed as SEM ± SE. * denotes significantly 

different from C57BL/6 Values are normalized either to the respective total protein for 

phosphoproteins and to GAPDH for non – phosphorylated proteins. (n = 5- 6 per group, p 

< 0.05) Dotted line indicates levels of C57BL/6. Abbreviations: Non = Non – Cachectic 

Apc
Min/+    

Sev = severely cachectic Apc
Min/+
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Figure 2.1: Effect of cachexia progression on liver morphology and MAPK signaling A) Hematoxlyin and Eosin 

Staining of liver section for C57BL/6, Non – cachectic and severely cachectic Apc
Min/+

 mice. B) Expression of levels of 

phosphorylated ERK and JNK in the liver  
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Figure 2.2: Effect of cancer on ER stress markers. Bip1, IRE-1 and ATF-6 p50 expression in the liver of non 

– cachectic ApcMin/+ 
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Figure 2.3: Effect of cancer liver glycogen stores. A) Glycogen stores as determined by PAS staining. B) Morphometry 

for the PAS stain to estimate glycogen stores in the WT and non – cachectic liver 
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Figure 2.4: Effect of cancer on liver metabolic, and anabolic signaling in non – cachectic mice. A) Liver mRNA expression of 

metabolic genes PFK and PEPCK B) Protein expression liver anabolic and apoptotic signaling in the non-cachectic mice. Values 

are expressed as SEM ± SE. * denotes significantly different from C57BL/6 Values are normalized either to the respective total 

protein for phosphoproteins and to GAPDH for non – phosphorylated proteins. (n = 5- 6 per group, p < 0.05) Dotted line indicates 

levels of C57BL/6. Abbreviations: Non = Non – Cachectic ApcMin/+;   
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Fig 2.5: Effect of cancer on liver inflammatory signaling in non – cachectic mice. A) Liver mRNA expression inflammatory 

markers B) Protein expression liver inflammatory signaling in the non-cachectic mice. Values are expressed as SEM ± SE. * 

denotes significantly different from C57BL/6 Values are normalized either to the respective total protein for phosphoproteins 

and to GAPDH for non – phosphorylated proteins. (n = 5- 6 per group, p < 0.05) Dotted line indicates levels of C57BL/6. 

Abbreviations: Non = Non – Cachectic ApcMin/+ 
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  Figure 2.6: Hepatic ER stress markers with cachexia progression. ER stress markers Bip, IRE1α and ATF p50 

were examined in the liver of non, pre and severely cachectic mice. Values are expressed as SEM ± SE. (n = 6- 8 per 

group, p < 0.05) Dotted line indicates levels of Non – cachectic mice. Non = Non – Cachectic ApcMin/+ Sev = 

severely cachectic ApcMin/+;   
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   Figure 2.7: Changes in liver morphology with cachexia progression. Histological evaluation for liver glycogen. 

Glycogen content severely depleted in the 20 week severely cachectic mice and morphometry of PAS staining using ImageJ 

Values are expressed as SEM ± SE. (n = 6- 8 per group, p < 0.05) Dotted line indicates levels of Non – cachectic mice. Non 

= Non – Cachectic ApcMin/+ Sev = severely cachectic ApcMin/+;   
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Figure 2.8: Changes in liver metabolic and anabolic markers with cachexia progression. A) Liver mRNA expression of 

metabolic genes PFK and PEPCK B) Protein expression liver anabolic and apoptotic signaling with cachexia progression. 

Values are expressed as SEM ± SE. * denotes significantly different from C57BL/6 Values are normalized either to the 

respective total protein for phosphoproteins and to GAPDH for non – phosphorylated proteins. (n = 5- 6 per group, p < 0.05) 

Dotted line indicates levels of Non – cachectic mice. Non = Non – Cachectic ApcMin/+ Sev = severely cachectic ApcMin/+;   
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Fig 2.9: Liver inflammatory signaling with cachexia progression. A) Liver mRNA expression inflammatory markers B) 

Protein expression liver inflammatory signaling with cachexia progression. Values are expressed as SEM ± SE. * denotes 

significantly different from C57BL/6 Values are normalized either to the respective total protein for phosphoproteins and to 

GAPDH for non – phosphorylated proteins. (n = 5- 6 per group, p < 0.05) Dotted line indicates levels of Non – cachectic 

Min. Abbreviations: Non = Non – Cachectic ApcMin/+    Sev = severely cachectic ApcMin/+;   
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Figure 2.10: Schematic diagram describing the molecular signaling associated with cachexia progression in the liver  
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CHAPTER 3       

 

ROLE OF CHRONIC INFLAMMATION ON LIVER FUNCTION IN CACHECTIC 

APC
MIN/+

 MICE
2 

 

                                                           
2 Narsale, A., et. al. 2014 The Role of Chronic Inflammation on Liver Function in 

Cachectic ApcMin/+ mice To be submitted to Biochemica et Biophysica Acta 
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3.1 ABSTRACT:  

 Cancer Cachexia is a multifactorial syndrome characterized by loss of muscle and 

fat mass. Although cachexia has many signature hallmarks related to the underlying 

disease, chronic inflammation is a unifying characteristic of cachexia progression. The 

ApcMin/+ mouse is an established model of cancer cachexia where the chronic inflammatory 

state is sustained by high plasma IL – 6 levels. The liver’s acute phase inflammatory 

response is maintained in despite depleted glycogen stores, altered AKT/mTOR signaling, 

and the induction of ER stress. The inhibition of chronic inflammation has the potential to 

alter cachexia progression. The purpose of this study was to examine if inhibition of 

chronic inflammation can alter cachexia-induced liver dysfunction ApcMin/+ mice. To 

inhibit chronic inflammation ApcMin/+ mice were administered pyrrolidine dithiocarbamate 

(PDTC), a global STAT3 and NF-kB inhibitor, or a trans IL – 6 signaling inhibitor, a 

soluble gp130 fusion protein (sFcgp130), for a period of two weeks after the initiation of 

cachexia. Mice were analyzed for liver function related to inflammation, and metabolic 

signaling. PDTC attenuated body weight loss and fat mass loss. PDTC also increased liver 

glycogen content, liver lipid content, liver weight, and PFK mRNA expression, while 

suppressing PEPCK expression.   Liver inflammation and AKT/mTOR signaling were not 

altered by PDTC. Administration of sFcgp130 attenuated body weight loss and mesenteric 

fat loss without significantly rescuing total muscle mass loss.  It also increased liver 

PEPCK mRNA     expression without affecting PFK mRNA expression.  sFcgp130 

administration did not affect haptaglobin mRNA levels or inhibition of the protein 

synthesis markers. Together these results indicate that chronic inflammation directly 
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influences indices of liver glycolysis and gluconeogenesis, but is not the primary source 

for inflammatory and protein synthesis disruption in the cachectic liver. 

Keywords: PDTC, sFcgp130, IL – 6, trans – signaling, acute phase response 

3.2 INTRODUCTION 

Cachexia is a wasting syndrome seen with the later stages of chronic diseases like 

Rheumatoid Arthritis, COPD, AIDS and cancer. Once developed cachectic symptoms 

persists independent of the chronic disease and  hence current treatments of many chronic 

diseases tough effectively improve lifespan, do little to improve quality of life in patients.  

Treatment and therapies for cachexia are thus important, to allow complete and effective 

recovery in patients. But no therapies are currently approved for cachexia due its 

multifactorial nature34 with cachexia symptoms varying between patients and the 

underlying chronic disease. However, all the signature hallmarks of cachexia are 

underlined by a chronic inflammatory state leading to loss of muscle and fat mass. Thus 

resolving this chronic inflammatory state might be the key to restrict and reverse this 

wasting syndrome.   

Chronic inflammation is an energy expensive process resulting from the 

constitutive activation of the immune system. In hypermetabolic diseases like cancer, 

sustained activation of the immune responses compete with proliferating tumors for the 

inadequate energy reserves,  accelerating catabolic processes degrading skeletal muscle to 

amino acids. Liver can take up these free amino acids to trigger the energy expensive acute 

phase response (APR), by the secreting acute phase proteins which can help fight the tumor 

but can also further degrade skeletal muscle14. Thus liver induced inflammatory response 
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could be central to both chronic inflammation and sustained hypermetabolic state and 

suppression of liver based inflammation may attenuate cachexia progression  

 Our previous studies with the ApcMin/+ mouse have established it as an IL – 6 

dependent model of cancer cachexia, that gradually loses muscle and fat mass. The 

cachectic ApcMin/+ mouse also exhibits splenomegaly, anemia, increased gut permeability, 

elevated plasma endotoxin and a liver mediated APR. Previous studies have also shown 

that inhibition of IL – 6 in the ApcMin/+ mouse by administration of the IL – 6 receptor 

antibody attenuates cachexia progression by suppression degradation pathways in skeletal 

muscle 19, possibly due the presence of the  soluble IL – 6 receptor (sIL-6R) pathway, 

blunting the efficacy of the inhibitor and antibodies. Moreover, STAT-3 phosphorylation 

in the liver was observed independent of IL – 6 in the cancerous ApcMin/+ mouse, reiterating 

that yet unknown IL – 6 independent factors can trigger inflammatory intermediates in the 

ApcMin/+ (unpublished data).  In this study we test the efficacy of two new compounds – 

pyrrolidine dithiocarbamate (PDTC) and gp130 fusion protein (sFcgp130) - as possible 

therapeutic agents to inhibit cachexia progression. PDTC is an anti – oxidant and a metal 

chelator that works via inhibition of the inflammatory intermediates STAT-3 and NF-kB. 

Administration of PDTC in the ApcMin/+ mouse would allow us to inhibit both STAT-3 and 

NF-kB induced inflammation during cachexia progression. But since PDTC is a global non 

– specific inhibitor of inflammatory signaling intermediates, it could possibly have adverse 

effects on essential function of immune cells during disease. Hence we also propose to use 

the recently developed sFcgp130 which can bind to the sIL-6 – IL6R complex in plasma 

to inhibit the pro – inflammatory arm of IL – 6 signaling, while maintaining the classical 

signaling essential for tissue growth and regeneration intact.   
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Taken together, cachexia in the ApcMin/+mouse is related to the underlying chronic 

inflammatory state. It is not certain if the liver’s IL – 6 induced APR during cachexia leads 

to muscle degradation 14. We have already established that cachexia progression disrupts 

liver metabolic, and inflammatory signaling (Narsale, A, et.al). These results suggest that 

during severe cachexia mice demonstrate elevated glucose flux, APR, and altered protein 

turnover regulation.  It remains unclear if altered liver function is causal to the progression 

of cachexia. The purpose of this study was to examine if inhibition of chronic inflammation 

can alter cachexia-induced liver dysfunction ApcMin/+ mice. We hypothesized that systemic 

inhibition of chronic inflammation in the ApcMin/+ mouse would improve liver function by 

suppressing liver APR and restoring metabolic signaling.  Severely cachectic ApcMin/+ mice 

were treated with PDTC or sFcgp130 for a period of two weeks to treat cachexia symptoms. 

Liver function was measured in terms of inflammatory, metabolic, apoptotic and protein 

synthesis markers and correlated to cachexia progression in the treated mice to determine 

the role of chronic inflammation inhibition on liver function and cachexia progression.  

3.3 METHODS: 

3.3. I ANIMALS 

All animal procedures were approved by the University of South Carolina’s 

Institutional Animal Care and Use Committee. All mice were housed in standard cages and 

kept on a 12hr: 12hr light: dark cycle with the light period starting 0700 hrs. The mice were 

had an ad libitum access to water and food (standard rodent chow, cat. no. 8604 Rodent 

Diet; Harlan Teklad, Madison, WI). 8 week old C57BL/6 and ApcMin/+ mice were 

introduced into the study and monitored for Body weight loss, Food intake and body 

temperature, throughout the course of the study. Following an overnight fast, mice were 
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sacrificed at 12 weeks (non – cachectic, N = 6), 14 weeks (pre – cachectic N = 6) and 18 – 

20 weeks (severely cachectic, N=6), to delineate the systemic changes related to cancer 

from cachexia.  

3.3. II PYRROLIDINE DITHIOCARBAMATE (PDTC) ADMINISTRATION 

A subset of mice (N = 6) were treated with a STAT-3 and NF – ΚB inhibitor – 

Pyrrolidine dithiocarbamate (10mg/kg/mouse for 2 weeks, i.p.). PDTC treatment was 

initiated in mice displaying 8 – 10% weight loss at 16 – 18 weeks of age. C57BL/6 mice 

were used as WT controls 

3.3. III GP130 FUSION PROTEIN (SFCGP130) ADMINISTRATION 

A subset of moderately cachectic ApcMin/+ mice, (8 – 10%) body weight loss were 

injected with 300ug/week of gp130 fusion protein (gift from Dr. Stephan Rose – John97, 

intraperitoneally for 2 weeks. C57BL/6 mice were used as WT controls. Animals were 

monitored for body weight, body composition and food intake through the course of the 

study. 

3.3 IV TISSUE COLLECTION 

Mice were anesthetized using the ketamine cocktail. Plasma was collected prior to 

tissue collection via blood draws through the retro-orbital sinus. Muscle and liver were 

collected during the sacrifice and were either snap frozen in liquid nitrogen and stored at - 

80⁰C. Intestine segments were isolated, cleaned and cut into 4 equal segments of the small 

intestine and a segment for the colon. These were used to account for tumor burden in the 

cachectic Apc Min/+ mice. 
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3.3. V IL – 6 PLASMA LEVELS 

IL – 6 levels in the plasma were quantified using the BD BioSciences, Mouse – IL 

– 6 ELISA kit. Briefly, 25 – 50ul of plasma was diluted down to 100ul and the ELISA was 

performed according to manufacturer’s instructions.  

3.3. VI RNA EXTRACTION, CDNA PREPARATION AND REAL – TIME PCR  

PCR was performed as described previously 76. Briefly, RNA was isolated by 

homogenizing the liver tissue in Trizol (Invitrogen, Cat # 15596), followed by a 

chloroform/isopropyl alcohol extraction. cDNA and RT-PCR assays were performed using 

reagents purchased from (ABI, Foster City, USA). Primers for SOCS-314, Haptaglobin14, 

PFK77 and PEPCK77 primers purchased from IDT (Coralville, IA, USA). Data was 

analyzed using the comparative cycle threshold [Ct] method calculated by the ABI 

software.   

3.3.VII WESTERN BLOT 

Western blots were performed as described previously 78. Briefly, a piece of the 

liver was cut, weighed and placed in 10 times the volume of Muller Buffer. The tissue was 

homogenized in the buffer using a glass or glass homogenizer. The resultant homogenate 

was quantified for protein concentration using the Bradford assay. All protein samples were 

diluted to 3ug/µl concentration to aid equal loading on the gel. Homogenates were 

fractionated on SDS – PAGE acrylamide gels (6% - 15%) and transferred overnight onto 

a PVDF membrane. The membrane was Ponceaued following the transfer to ensure equal 

loading. The PVDF membrane was then probed for STAT-3, mTOR, S6, Akt, MMP-2, p-

p65, GAPDH (Cell Signaling Technology, Danvers, MA, USA) gp130 and Albumin (Santa 

Cruz Biotechnology). A corresponding secondary antibody was used along with the 
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chemiluminescent agent Quantum ECL (BioExpress, Kaysville, UT, USA) to visualize the 

protein bands. ImageJ (NIH, Bethesda, MD, USA) software was used for quantification of 

the integrated optical density (IOD) for Western blot bands. 

3.3. VIII PERIODIC ACID SCHIFF’S STAINING 

A small piece of liver tissue was mounted on an OCT block and sectioned at -16⁰C. 

The slides were fixed in Carnoy’s fixative for 10 minutes followed by 30 minute incubation 

in the Periodic Acid. Slides were then washed with water and exposed to Schiff’s reagent 

for 30 minutes. The slides were counter stained with Hematoxylin, dehydrated through 

alcohol grades and mounted using Permount. The slides were imaged the next day using 

the DP70 Olympus microscope.  

3.3.IX HEMATOXYLIN AND EOSIN STAINING 

A subset of severely cachectic Apc Min/+ mice were perfused with 4% PFA in PBS. 

Liver was stored in 4% PFA overnight and transferred to a 30% sucrose solution. The 

perfused liver was mounted in a wax block and cut using a microtome. The sections were 

deprafinized and stained with Hematoxylin and Eosin stained, dehydrated using alcohol 

grades. Slides were mounted in the Permount media and imaged using the DP-70 (Olympus 

Imaging, Centre Valley, PA, USA) camera. 

3.3. X LIPID EXTRACTION 

Approximately 100 mg of frozen liver tissue was weighed and added to a tube 

containing 4ml of Chloroform: methanol mixture (2:1). The livers were homogenized in 

the organic solvents and the resulting mixture was gently mixed for the next 20 minutes. 

The homogenate was centrifuged to separate the organic and aqueous phases. The bottom 
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layer was pippeted out carefully in a new pre - weighed 5ml glass tube and evaporated 

using the nitrogen vacuum system. Once dried the tube was weighed again for a post 

weight. Lipid content was calculated by subtracting the post weight of the tube from the 

pre weight of the tube.  

3.3. XI STATISTICAL ANALYSIS  

All statistical analysis was performed using the GraphPad Prism software. Two – 

Way ANOVA was used to test the effect of body weight, muscle mass, fat mass and organ 

mass with PDTC and sFcgp130 treatment. Student Newman – Keul post hoc analysis was 

used to analyze the difference between groups. Pre – planned t – test was used to study the 

effect of treatment on the ApcMin/+. Values were expressed as Mean ± SE. Significance was 

set at p<0.05.  

3.4 RESULTS: 

3.4. I EFFECT OF PDTC TREATMENT ON TUMOR BURDEN 

We have previously established that tumor burden in the ApcMin/+ mice correlates 

with cachexia progression. However, this correlation exists between tumor size rather than 

tumor number, which plateaus in the ApcMin/+ mice at 12 weeks of age prior to cachexia 

initiation59. Two weeks of PDTC treatment did not affect tumor number as compared to 

untreated ApcMin/+ (Fig 1A), however it did reduce tumor burden by decreasing the 

percentage of large (>2 mm) tumors. Total tumor was held steady by increasing the 

percentage of both small (<1mm) and mid-size (1 – 2mm) tumors (Fig 1B). The wild type 

mice treated with PDTC showed no obvious change in intestinal morphology as compared 

to the untreated wild type mice (data not shown).  
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3.4. II EFFECT OF PDTC TREATMENT ON BODY MASS 

  C57BL/6 and ApcMin/+ mice were initiated into the study at 8 weeks of age and body 

weight was monitored on a daily basis. At 12 weeks of age the mice were divided into 

either a PBS injectable or a PDTC injectable group based such that both groups had 

comparable peak body weights. PDTC (100mg/ml) or PBS administration was started at 

16 – 18 weeks of age after the ApcMin/+ mice had lost about 6 – 8% of their peak body 

weight till sacrifice (Fig2). A Two Way ANOVA was used to determine the effect and 

possible interaction between PDTC treated and untreated WT and ApcMin/+ mice, whereas 

a pre – planned t –test was used to determine the effect of PDTC treatment in the ApcMin/+ 

only (p < 0.05). PDTC administration attenuated body weight loss in the ApcMin/+ mouse 

over the two week period (Fig2A). PDTC treatments resulted in attenuated total fat mass 

(Fig 2B) and epidydimal fat loss (Fig 2C) in the ApcMin/+ mouse. Body composition analysis 

using a DEXA scan  also revealed an increase in total lean mass in the PDTC treated as 

compared to the untreated ApcMin/+  mice (Fig 2B, 2D). 98 Total muscle mass was decreased 

with the ApcMin/+ mouse, but there was main effect of PDTC treatment on muscle mass in 

both the WT and cachectic mice (Fig 2E). However, there was a significant increase liver 

mass in the ApcMin/+ as compared to the WT and PDTC administration enhanced liver 

hypertrophy independent of genotype (Fig 2F).  

 

3.4. III EFFECT OF PDTC TREATMENT ON LIVER GLYCOGEN AND LIPID CONTENT 

  Hepatomegaly observed in the cachectic ApcMin/+ was independent of liver glycogen 

stores which were severely depleted in the untreated cachectic ApcMin/+ mice. PDTC 

treatment significantly increased liver glycogen content in the ApcMin/+ mice (Fig 3A and 
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3B) but there was no difference in the glycogen content in the livers of treated and untreated 

WT mice (Fig 3A). Loss of glycogen in the severely cachectic ApcMin/+ mouse was 

accompanied by a loss of liver lipid content as compared to the WT mouse (p=0.04), and 

PDTC treatment attenuated this loss of fat with lipid content in the liver being significantly 

higher than in the untreated ApcMin/+ mouse (Fig 3C).  

3.4. IV EFFECT OF PDTC TREATMENT ON LIVER METABOLIC MARKERS 

Altered glycolytic flux could affect liver glycogen and lipid content, and 

quantification of liver metabolic enzymes regulating glycolysis and gluconeogenesis was 

thus performed. Gluconeogenic enzyme PEPCK mRNA was not elevated in the cachectic 

ApcMin/+ mice as compared to control, but it was suppressed with PDTC treatment. Levels 

of PFK mRNA the enzyme regulating a key step in glycolysis were elevated in the severely 

cachectic ApcMin/+ mice and PDTC treatment further increased PFK transcription in the 

ApcMin/+ (Fig 4A). Glycogen and lipid storage in the liver are upregulated under anabolic 

conditions, but levels of phosphorylated Akt in the cachectic liver were suppressed and 

PDTC treatment was unable to release this inhibition. Interestingly, levels of 

phosphorylated mTOR were upregulated in the untreated ApcMin/+ and this increase was not 

affected by PDTC treatment (Fig 4B).     

3.4. V EFFECT OF PDTC TREATMENT ON LIVER INFLAMMATION  

Severely cachectic mice upregulate plasma IL – 6 levels and two weeks of PDTC 

treatment did not attenuate the increase levels of this inflammatory cytokine (Fig 4A). 

STAT-3 the downstream target of IL – 6 was upregulated with no effect of PDTC treatment 

(Fig 4B).  Subsequently haptaglobin mRNA transcription is controlled by phosphorylated 

STAT-3 levels and PDTC treatment did not attenuate liver haptaglobin mRNA levels as 
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compared to the untreated ApcMin/+ (Fig 4C). Other markers of liver inflammation like p – 

p65, albumin and MMP2 were also unaffected by PDTC treatment in the ApcMin/+ (Fig 4D).    

3.4. VI EFFECT OF SFCGP130 TREATMENT ON TUMOR BURDEN 

Two week administration of sFcgp130 did not affect total tumor number in the 

treated as compared to the untreated ApcMin/+ mice (Fig 6A). When analyzed for percent 

tumor distribution there was an increase in mid – size tumor (1 – 2mm) but fusion protein 

did not decrease the number of large tumors in the small intestine (Fig 6B).  

3.4. VII EFFECT OF SFCGP130 TREATMENT ON BODY MASS 

sFcgp130 treatment attenuated weight loss in the ApcMin/+ mice (Fig 7A) which can 

be attributed to attenuation of fat loss as measured by DEXA (Fig 7B) and Mesenteric Fat 

mass (Fig 7C).  Total lean mass, the sum of skeletal muscle mass and visceral organ mass, 

as measured by DEXA showed a small but significant decrease (Fig 7D). Total muscle 

weight as measured at sacrifice exhibited an approximate 33% atrophy in the cachectic 

ApcMin/+   as compared to the WT control. Further, administration of fusion protein did not 

rescue skeletal muscle atrophy in these mice (Fig 7E).  Hepatomegaly was observed in the 

cachectic ApcMin/+   mice as compared to the control and this hypertrophy in liver mass was 

not attenuated upon sFcgp130 administration (Fig 7F).  

3.4. VIII EFFECT OF SFCGP130 TREATMENT ON LIVER GLYCOGEN CONTENT  

Hypertrophied ApcMin/+   mice liver were compared with the WT mice, for glycogen 

content and total lipid content. Severely cachectic ApcMin/+ mice severely depleted both 

glycogen and lipid content in the liver (Fig 8). Administration of sFcgp130 fusion protein 

did not rescue liver glycogen or lipid content (Fig 8). There was no effect of the treatment 

on WT mice (data not shown).  



www.manaraa.com

 

57 

3.4. IX EFFECT OF SFCGP130 TREATMENT ON LIVER METABOLIC AND PROTEIN SYNTHESIS 

MARKERS 

 

We next looked enzymes and proteins regulating liver’s anabolic and catabolic 

processes. PEPCK and PFK mRNA was analyzed to estimate the glycolytic and 

gluconeogenic flux. PEPCK mRNA was not affected by cachexia progression but was 

elevated after sFcgp130 treatment (Fig 9A). On the other hand, levels of the glycolytic 

enzyme were elevated with cachexia and sustained in the sFcgp130 administered cachectic 

mice (Fig 9A).  Protein synthesis signaling was suppressed in the cachectic liver with a 

severe suppression of Akt and S6 phosphorylation seen in the cachectic liver as compared 

to the WT mice. Administration of sFcgp130 did not rescue this inhibition of Akt and S6 

phosphorylation (Fig 9B). Interestingly, cachectic ApcMin/+ did not suppress p-mTOR 

levels which though unaffected by fusion protein treatment, were sustained in the face of 

suppressed Akt and S6 (Fig 9B).  

3.4. X EFFECT OF SFCGP130 ON LIVER INFLAMMATORY MARKERS  

IL-6 the driver of cachexia progression in the ApcMin/+ mice was suppressed with 

two week of sFcgp130 administration (Fig 10A). However, this suppression of plasma IL 

– 6 did not affect hepatic STAT-3 phosphorylation (Fig 10B). Subsequently, levels of 

mRNA levels of the acute phase protein haptaglobin were sustained even after sFcgp130 

treatment of the cachectic ApcMin/+ mice (Fig 10C). NF-B, the inflammatory intermediate 

was still suppressed in post sFcgp130 treatment, which was mimicked by its downstream 

target MMP-2 (Fig 10D).  
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3.5 DISCUSSION: 

The ApcMin/+ mouse model of cancer cachexia exhibits chronically elevated IL – 6 

levels that have been associated with the progression of wasting 19, 59. Additionally, there 

is a chronic induction of APR with cachexia that is associated with liver dysfunction99. The 

progression of cachexia increases liver STAT-3 phosphorylation, promotes production of 

acute phase proteins, suppresses protein synthesis and alters glucose flux 99. Severely 

cachectic ApcMin/+ mice also demonstrate depleted liver glycogen levels. Our current study 

examined if the disruption of IL-6 dependent signaling and/or associated inflammation 

could improve liver function and slow the progression of cachexia.   Our study establishes 

that the attenuation of cachexia progression by the inhibition of chronic inflammation 

coincides with improvements in some aspects of cachexia-induced liver dysfunction.  

PDTC treatment led to an increase in liver glycogen levels, and coincided with suppression 

of the gluconeogeneic enzyme PEPCK mRNA expression. Both treatments affect 

percentage tumor size distribution but neither treatment affected cachexia-induced changes 

in liver APR or protein synthesis.  Taken together our results demonstrate that chronic 

inflammation directly influences indices of liver glycolysis and gluconeogenesis, but is not 

the primary source for inflammatory and protein synthesis disruption in the cachectic liver.  

Our current study demonstrates that PDTC administration can lead to a decrease in 

number of large intestinal tumors, but increasing the number of small and mid – size 

tumors. Though the current experimental set up does not allow us to tease out if the tumor 

burden redistribution was due to shrinkage of large tumors or due to the an arrest in tumor 

growth at 16 weeks, the reduced tumor burden attenuates cachexia progression in the face 

of elevated plasma IL – 6 levels. We report the novel finding that PDTC administration 
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can reverse bodyweight loss in ApcMin/+ mice that have initiated cachexia. The body mass 

increase could be accounted for by increased fat mass and hypertrophy of internal organs, 

such as the liver. Hepatomegaly of the liver is in the cachectic untreated ApcMin/+ mouse is 

interesting and occurs even as the liver depletes its lipid and glycogen stores. However, it 

can be possibly explained by the ability of chronic IL – 6 exposure to induce hyperplasia 

in rodent liver98. Interestingly, PDTC treatment also led to liver hypertrophy independent 

of the genotype. PDTC treatment possibly increased protein translation in the WT mice as 

observed via the upregulation of S6 levels in the WT mice. But protein synthesis is 

suppressed in the cachectic ApcMin/+ liver and hepatomegaly in the PDTC treated ApcMin/+ 

liver could possibly due to rescuing of liver glycogen and lipid content, possibly by altering 

the metabolic signaling in the face of a reduced tumor burden. Zhu et.al, 2011 demonstrated 

that PDTC administration to septic mice could suppress liver gluconeogenic enzymes and 

alter liver glucose flux. We extend these findings by showing that PDTC was able to 

suppress liver gluconeogenic enzyme PEPCK mRNA expression in cachectic ApcMin/+ 

mice.  Interestingly, the suppression of gluconeogenesis was associated with increased 

expression of glycolytic enzyme PFK mRNA, which suggests PDTC altered glucose flux 

in the cachectic liver. Our findings related to liver gluconeogenesis, glycogen stores and 

lipid content suggest that PDTC treatment can attenuate the liver hypermetabolic state that 

accompanies cancer cachexia.  

Although, it needs to be noted that, this attenuation in metabolic signaling occurs 

independent of inflammatory signaling responses in the liver which remain unchanged 

upon PDTC administration in our model. PDTC administration in the ApcMin/+ mouse did 

not suppress plasma IL – 6 levels and thus we did not see a suppression of STAT-3 or 
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haptaglobin activation in the ApcMin/+liver. Since the inflammatory marker, NF-B is 

already suppressed in the cachectic liver, we hypothesize that the potency of PDTC to 

suppress liver inflammation is diminished in the liver. Moreover, liver inflammation in the 

cachectic ApcMin/+ model is independent of the traditional TNF/TLR/NF-kB signaling and 

is governed by a strong upregulation of the liver’s APR response. Recent studies have 

shown that suppression of liver APR in models of sepsis and inflammation are more 

harmful than beneficial100,101,102,103. Transgenic mice with a suppressed APR in models of 

cancer had shorter life spans as compared to the wild type littermates indicating that liver 

induced APR is essential to suppress tumor growth during cancer 100,23. Taken together 

these results indicate that increased PDTC treatment attenuates liver metabolic functions 

by attenuation of the hypermetabolic response, independent of liver inflammation and 

plasma IL – 6. 

On the other hand, administration of sFcgp130, reduced plasma IL – 6 levels but 

did not reduce tumor burden in the small intestine.  The sFcgp130 is designed specifically 

to inhibit trans – IL-6 signaling in the cachectic ApcMin/+ mouse. Activation of the trans-IL-

6 signaling pathway is indicative of soluble IL-6 receptor mediated signaling and is 

considered pro – inflammatory as opposed to the classical IL – 6 pathway which is known 

to exhibit anti – inflammatory properties24.  Administration of this protein for two weeks 

significantly reduced plasma IL – 6 levels, demonstrating the almost all of the circulating 

IL – 6 during cachexia progression signals via the soluble IL – 6 receptor. This suppression 

of plasma IL – 6, corresponded with a decrease in the body weight loss in the sFcgp130 

treated cachectic mice as compared to the untreated controls. Rescuing of body mass loss 

could be attributed to sparing of fat mass, with no effect of the treatment on lean mass. 
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Total lean mass as calculated by DEXA scans decreased in the cachectic ApcMin/+ mice 

revealing a severe loss of muscle mass loss which could not  be compensated by the 

hypertrophy of visceral organs like spleen and liver on the DEXA. This loss of skeletal 

muscle mass could be ascribed to the still elevated levels of STAT 3 and its downstream 

target haptaglobin in the liver, which seem to be degrading muscle mass independent of 

plasma IL – 6 levels. We have recently reported that ER stress is initiated early in the 

ApcMin/+  mice, prior to initiation of cachexia, and is propagated downstream towards 

apoptosis with cachexia progression99, and intermediates of the ER stress pathway like 

ATF 6 can induce induction of acute phase response proteins independent of IL – 6104. 

With a sustained hypermetabolic state as seen in the severely cachectic mice, skeletal 

muscle is broken down to simple amino acids, which are being used as an energy source 

instead of the usual sugars and fats. Thus degradation of muscle mass loss in the cachectic 

ApcMin/+ mouse seems to be function of hypermetabolism rather than elevated plasma IL – 

6.  SFcgp130 administration did not affect hepatomegaly seen in the cachectic ApcMin/+ 

mice, nor did it affect the Akt/S6 signaling or glycogen content in liver in the treated vs 

untreated mice. The inability to affect the Akt/S6 signaling intermediates was not 

surprising as previous studies from our lab using the generic IL -6R antibody and skm-

gp130KO study has shown that IL- 6 work on attenuation of body mass by inhibition of 

degradation pathway rather than rescuing the protein synthesis inhibition19, 20. sFcgp130 

administration in ApcMin/+ mouse led to an increase in expression of the gluconeogenic 

enzyme PEPCK while levels of the glycolytic enzyme PFK, which were elevated with 

cachexia progression were sustained. And tough this is the first study to report the role of 

glycolytic enzymes with trans – signaling inhibition, IL-6 signaling in general (both 
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classical and trans together) is known to induce gluconeogenesis105. Since chronic IL – 6 

secretion is only seen with a diseased state increased gluconeogenesis provides the 

necessary fuel to sustain the elevated metabolic rate during disease. But we see an 

upregulated gluconeogenic response in the absence of plasma IL – 6 levels, suggesting that 

trans IL – 6 signaling might be inhibit gluconeogenesis during cachexia progression.  

It is important to note that when compared to the PDTC treatment, WT mice treated 

with sFcgp130 did not increase S6 phosphorylation in the WT mice indicating a role for 

NF-kB in constitutively inhibiting baseline protein synthesis markers. As stated earlier the 

effect of PDTC on liver process could be minimized due suppression of NF- kB 

phosphorylation in the liver with cachexia progression but NF-kB is upregulated with 

cachexia progression in the skeletal muscle and PDTC administration rescues protein 

synthesis pathways in the cachectic skeletal muscle21. In conclusion, inhibition of IL – 6 

related pathways attenuate cachexia progression by independent of the hepatic 

inflammation and anabolic state as measured by the Akt/mTOR pathway. However, loss 

of IL – 6 does alter liver metabolic functions possibly due to the indirect effect of IL – 6 

on tumor development and growth. 
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3.7 FIGURE LEGENDS: 

Figure 1:  Effect of PDTC treatment on tumor number and distribution in the 

cachectic Apc
Min/+

 mouse A) Total tumor number in the intestine B) Tumor distribution 

according to tumor size in the intestine. Values are expressed as Mean ± SE. P < 0.05. A 

pre – planned t – test was performed between the PDTC treated and untreated groups.  

Figure 2:  Effect of PDTC treatment on the body mass in the wild type and cachectic 

Apc
Min/+

 mouse. A) Percent change in body weight loss from  Peak body weight to sacrifice 

weight B) Total fat mass C) Epidydimal fat mass D) Total lean mass  E) Total muscle 

weight F) Liver weight in the cachectic Apc
Min/+

 mice.  Values are expressed as Mean ± SE. 

P < 0.05. A Two – WAY ANOVA was used to analyze the data. Student – Newman Keul’s 

post hoc test was used to analyze the main effects and interactions. A pre – planned t-test 

was used to determine the effect of PDTC treatment within the Apc
Min/+  

 $ - denotes 

different from all the other groups by ANOVA, * different from the Apc
Min/+ 

as compared 

by the pre – planned test 

Figure 3: Effect of PDTC treatment on liver weight, glycogen and lipid content A) 

Histology images for PAS staining, counterstained with hematoxylin imaged at 10 X B) 

Morphometric analysis of the cachectic liver tissue represented as percentage of the 

stained/total area.  C) Liver lipid content.  Values are expressed as Mean ± SE. P = 0.05. * 

denotes significant difference from the PBS treated Apc
Min/+

 mouse determined by a pre – 

planned t-test. Dotted line indicates the C57BL/6 control value 

Figure 4: Effect of PDTC treatment on liver metabolic signaling A) mRNA expression 

of metabolic enzymes PEPCK and PFK. B) Protein expression for Akt/mTOR signaling. 

Values expressed as Mean ± SE p = 0.05   * denotes significant difference from the PBS 
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treated Apc
Min/+

 mouse determined by a pre – planned t-test. Dotted line indicates the 

C57BL/6 control value 

Figure 5: Effect of PDTC on systemic and liver inflammation. A) Plasma IL – 6 levels. 

B) Liver STAT-3 levels C) Haptaglobin mRNA levels D) Liver inflammatory markers. 

Mean ± SE. P < 0.05. A Two – WAY ANOVA was used to analyze the data. Student – 

Newman Keul’s post hoc test was used to analyze the main effects and interactions. A pre 

– planned t-test was used to determine the effect of PDTC treatment within the Apc
Min/+  

 $ 

- denotes different from all the other groups by ANOVA, * different from the Apc
Min/+ 

as 

compared by the pre – planned test. An unpaired t – test was used to compare the effect of 

PDTC treatment between treatment and control groups in the Apc
Min/+ 

Figure 6:  Effect of sFcgp130 treatment on tumor number and distribution in the 

cachectic Apc
Min/+

 mouse A) Total tumor number in the intestine B) Tumor distribution 

according to tumor size in the intestine. Values are expressed as Mean ± SE. P < 0.05. A 

pre – planned t – test was performed between the sFcgp130 treated and untreated groups.  

Figure 7:  Effect of sFcgp130 treatment on the body mass in the wild type and 

cachectic Apc
Min/+

 mouse. A) Percent change in body weight loss from  Peak body weight 

to sacrifice weight B) Total fat mass C) Epidydimal fat mass D) Total lean mass  E) Total 

muscle weight F) Liver weight in the cachectic Apc
Min/+

 mice.  Values are expressed as 

Mean ± SE. P < 0.05. A Two – WAY ANOVA was used to analyze the data. Student – 

Newman Keul’s post hoc test was used to analyze the main effects and interactions. A pre 

– planned t-test was used to determine the effect of PDTC treatment within the Apc
Min/+  

 $ 
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- denotes different from all the other groups by ANOVA, * different from the Apc
Min/+ 

as 

compared by the pre – planned test 

Figure 8: Effect of sFcgp130 treatment on liver weight, glycogen and lipid content A) 

Histology images for PAS staining, counterstained with hematoxylin imaged at 10 X B) 

Morphometric analysis of the cachectic liver tissue represented as percentage of the 

stained/total area.  C) Liver lipid content.  Values are expressed as Mean ± SE. P = 0.05. * 

denotes significant difference from the PBS treated Apc
Min/+

 mouse determined by a pre – 

planned t-test. Dotted line indicates the C57BL/6 control value 

Figure 9: Effect of sFcgp130 treatment on liver metabolic signaling A) mRNA 

expression of metabolic enzymes PEPCK and PFK. B) Protein expression for Akt/mTOR 

signaling. Values expressed as Mean ± SE p = 0.05   * denotes significant difference from 

the PBS treated Apc
Min/+

 mouse determined by a pre – planned t-test. Dotted line indicates 

the C57BL/6 control value 

Figure 10: Effect of sFcgp130 on systemic and liver inflammation. A) Plasma IL – 6 

levels. B) Liver STAT-3 levels C) Haptaglobin mRNA levels D) Liver inflammatory 

markers. Mean ± SE. P < 0.05. A Two – WAY ANOVA was used to analyze the data. Student 

– Newman Keul’s post hoc test was used to analyze the main effects and interactions. A 

pre – planned t-test was used to determine the effect of sFcgp130 treatment within the 

Apc
Min/+  

 $ - denotes different from all the other groups by ANOVA, * different from the 

Apc
Min/+ 

as compared by the pre – planned test. An unpaired t – test was used to compare 

the effect of PDTC treatment between treatment and control groups in the Apc
Min/+
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Figure 3.1:  Effect of PDTC treatment on tumor number and distribution in the cachectic Apc

Min/+
 mouse A) Total 

tumor number in the intestine B) Tumor distribution according to tumor size in the intestine. Values are expressed as Mean ± 

SE. P < 0.05. A pre – planned t – test was performed between the PDTC treated and untreated groups. 
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Figure 3.2: Effect of PDTC treatment on the body mass in the wild type and cachectic Apc
Min/+

 mouse. A) Percent change 

in BW loss from  Peak BW to sacrifice weight B) Total fat mass C) Epidydimal fat mass D) Total lean mass  E) Total muscle 

weight F) Liver weight in the cachectic Apc
Min/+

 mice.  Values are expressed as Mean ± SE. P < 0.05. A Two – WAY ANOVA with 

Student – Newman Keul’s post hoc was used to analyze the data. A pre – planned t-test was used to determine the effect of PDTC 

treatment within the Apc
Min/+  

 $ - denotes different from all the other groups by ANOVA, * different from the Apc
Min/+

 as compared 

by the pre – planned test 
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 Figure 3.3: Effect of PDTC treatment on liver weight, glycogen and lipid content A) Histology images for PAS staining, 

counterstained with hematoxylin imaged at 10 X B) Morphometric analysis of the cachectic liver tissue represented as 

percentage of the stained/total area.  C) Liver lipid content.  Values are expressed as Mean ± SE. P = 0.05. * denotes significant 

difference from the PBS treated Apc
Min/+

 mouse determined by a pre – planned t-test. Dotted line indicates B6 control value 
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Figure 3.4: Effect of PDTC treatment on liver metabolic signaling A) mRNA expression of metabolic enzymes PEPCK 

and PFK. B) Protein expression for Akt/mTOR signaling. Values expressed as Mean ± SE p = 0.05   * denotes significant 

difference from the PBS treated Apc
Min/+

 mouse determined by a pre – planned t-test. Dotted line indicates the C57BL/6 

control value 
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Figure 3.5: Effect of PDTC on systemic and liver inflammation. A) Plasma IL – 6 levels. B) Liver STAT-3 levels C) 

Haptaglobin mRNA levels D) Liver inflammatory markers. Mean ± SE. P < 0.05. A Two – WAY ANOVA was used to analyze 

the data. Student – Newman Keul’s post hoc test was used to analyze the main effects and interactions. A pre – planned t-test 

was used to determine the effect of PDTC treatment within the Apc
Min/+  

  



www.manaraa.com

 

 

7
3 

 

  

Figure 3.6:  Effect of sFcgp130 treatment on tumor number and distribution in the cachectic Apc
Min/+

 mouse A) Total 

tumor number in the intestine B) Tumor distribution according to tumor size in the intestine. Values are expressed as Mean 

± SE. P < 0.05. A pre – planned t – test was performed between the sFcgp130 treated and untreated groups. 
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Figure 3.7:  Effect of sFcgp130 treatment on the body mass in the wild type and cachectic Apc
Min/+

 mouse. A) Percent 

change in body weight loss from  Peak body weight to sacrifice weight B) Total fat mass C) Mesenteric fat mass D) Total 

lean mass  E) Total muscle weight F) Liver weight in the cachectic Apc
Min/+

 mice.  Values are expressed as Mean ± SE. P < 

0.05. A Two – WAY ANOVA was used to analyze the data. Student – Newman Keul’s post hoc test was used to analyze the 

main effects and interactions. A pre – planned t-test was used to determine the effect of PDTC treatment within the Apc
Min/+  

 

$ - denotes different from all the other groups by ANOVA, * different from the Apc
Min/+ 

as compared by the pre – planned test 
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Figure 3.8: Effect of sFcgp130 treatment on liver weight, glycogen and lipid content A) Histology images for PAS staining, 

counterstained with hematoxylin imaged at 10 X B) Morphometric analysis of the cachectic liver tissue represented as percentage 

of the stained/total area.  C) Liver lipid content.  Values are expressed as Mean ± SE. P = 0.05. * denotes significant difference 

from the PBS treated Apc
Min/+

 mouse determined by a pre – planned t-test. Dotted line indicates the C57BL/6 control value 
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Figure 3.9: Effect of sFcgp130 treatment on liver metabolic signaling A) mRNA expression of metabolic enzymes PEPCK 

and PFK. B) Protein expression for Akt/mTOR signaling. Values expressed as Mean ± SE p = 0.05   * denotes significant 

difference from the PBS treated Apc
Min/+

 mouse determined by a pre – planned t-test. Dotted line indicates the B6 control value 
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Figure 3.10: Effect of sFcgp130 on systemic and liver inflammation. A) Plasma IL – 6 levels. B) Liver STAT-3 levels C) 

Haptaglobin mRNA levels D) Liver inflammatory markers. Mean ± SE. P < 0.05. A pre – planned t-test was used to 

determine the effect of sFcgp130 treatment within the Apc
Min/+  

  * different from the Apc
Min/+ 

as compared by the pre – 

planned test.  
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CHAPTER 4 

THE EFFECT OF AN ANTIBIOTIC TREATMENT ON LIVER FUNCTION IN 

CACHECTIC APC
MIN/+

 MICE
3

                                                           
3 Narsale, A., et. al, 2014 The Effect of an Antibiotic Treatment on Liver Function in an 

Cachectic ApcMin/+ mouse To be submitted to Biochemica et Biophysica et Acta 
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4.1 ABSTRACT:  

Cachexia is a condition that occurs with many chronic diseases like cancer, AIDS 

and COPD. Patients suffering from cachexia display body weight loss that consists of both 

muscle and fat loss. The condition is also accompanied by metabolic disorders, 

lymphopenia, anemia and chronic inflammation. The ApcMin/+ mouse model of cancer 

cachexia mimics many of these symptoms and is widely used for therapeutic testing. 

Wasting in the ApcMin/+mouse is a downstream effect of the chronically activated 

inflammatory response primarily driven by pro-inflammatory cytokine IL – 6. However, 

cachectic mice also exhibit splenomegaly, hepatomegaly, swollen mesenteric lymph nodes, 

and elevated endotoxin levels which are associated with bacterial infection. Gut bacterial 

load through the portal vein can exacerbate liver inflammatory and metabolic status in 

severely cachectic ApcMin/+ mouse.   Therefore, we hypothesized that ApcMin/+ mice treated 

with antibiotics targeting the gram – negative bacteria (Polymyxin) would attenuate 

cachexia progression and improve liver dysfunction. ApcMin/+ mice were divided into to 3 

groups (N = 10) consisting of the antibiotic treatment and a control group. The treatment 

was initiated at 13 weeks of age and mice were monitored till 20 weeks of age or when 

body temperature dropped below 34.5 ⁰C. Livers from these mice were snap frozen and 

analyzed to study the inflammatory, anabolic and metabolic status of these mice.  

Antibiotic treatment reduced mesenteric lymph node swelling and spleen size as compared 

to untreated mice. Muscle wasting and fat pad loss was not alleviated by the antibiotic 

treatment. Also, circulating endotoxin levels were not affected by the administration of the 

antibiotic.  Antibiotic treatment did not suppress liver STAT-3 phosphorylation nor liver 

haptaglobin mRNA expression. Antibiotic treatment failed to improve suppressed liver 
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glycogen stores or Akt signaling. We conclude that suppression of immune response does 

not rescue cachexia progression or liver function in the ApcMin/+ mouse.    

Keywords: Polymyxin, splenomegaly, STAT-3, IL -6, endotoxin 

 

4.2 INTRODUCTION 

Cancer Cachexia develops during the advanced stages of the disease and manifests 

as the progressive and massive loss of body weight in patients. This loss of body weight 

can be accounted for by a corresponding loss of muscle and fat loss in patient due to a 

chronic inflammatory state. High levels of plasma pro – inflammatory cytokines like IL – 

6 and acute phase proteins (APP) have been shown to contribute to tissue loss in patients. 

Though chronic inflammation underlines all cachectic conditions, multiple factors 

contribute to this elevated immune response, complicating the treatment for cachexia.  

The ApcMin/+ mouse is model of colon cancer cachexia that mimics a gradual 

cachexia progression, as seen in humans. ApcMin/+ mice initiate cachexia at approximately 

14 weeks of age and are severely cachectic by 20 weeks of age. This loss of body mass in 

the ApcMin/+ is dependent on the pro – inflammatory cytokine IL – 6, though levels of 

endotoxin are known to be upregulated in severely cachectic mice with a corresponding 

increase in gut permeability. Severely cachectic mice have negligible fat stores and 

depleted muscle mass, but are accompanied by a hypertrophy of the internal organs like 

spleen and the liver. Hepatomegaly is the ApcMin/+ is interesting as it is accompanied by 

increased acute phase protein production but a depletion of liver glycogen, suppression of 

liver anabolic signaling by suppression of Akt – S6 activation and an increase in the 

glycolytic and gluconeogenic gene expression.   
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Suppression of systemic inflammation by inhibition of IL – 6 attenuates muscle and 

fat loss, but does not attenuate liver APR or STAT – 3 phosphorylation. But activation of 

STAT – 3 was seen even in non – cachectic mice, independent of IL – 6. Treatment of 

cachectic ApcMin/+ mice with the STAT – 3/NF-kB inhibitor pyrrolidine dithiocarbamate 

(PDTC), did not attenuate liver APR or STAT – 3 phosphorylation. But it could be argued 

that inability of PDTC, to suppress plasma IL – 6 could be a factor in the upregulated liver 

APR in these mice. But liver STAT-3 and APR were not suppressed even in the gp130 

fusion protein treated mice that did suppressed plasma IL – 6 levels.    As chronic 

inflammation induced by a chronically activated immune cell proliferation and activation, 

leads to cachexia onset, it is possible a yet unknown signaling intermediate sustains liver 

APR independent of IL – 6. Interestingly, inhibition of the energy expensive APR is 

detrimental to survival in endotoxemic mice due the ability of acute phase proteins to 

activate the anti – inflammatory MDSCs in the septic tissue (20530204). Endotoxemia in 

the severely cachectic mouse could thus exacerbate hepatic inflammation (via the portal 

vein) aggravating systemic inflammation and hypermetabolism in the ApcMin/+ mouse.    

Cachectic ApcMin/+ mice exhibit splenomegaly, hepatomegaly, swollen mesenteric 

lymph nodes, and elevated endotoxin levels which are associated with bacterial infection. 

Gut bacterial load through the portal vein has the potential to exacerbate liver inflammatory 

and metabolic status in severely cachectic ApcMin/+ mouse.   Gram – negative bacteria are 

known to be the major source of endotoxin due to their high LPS content and administration 

of antibiotics is the most common and effective method to suppress bacterial endotoxemia. 

Treatment of the ApcMin/+ mouse with antibiotics could thus help reduce systemic bacterial 

load and endotoxemia. Thus the purpose of this study was to examine if antibiotic treatment 
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will attenuate cachexia progression and liver dysfunction in the cachectic ApcMin/+ mouse.  

Mice were treated with the antibiotic – Polymyxin b at 13 weeks of age during the initiation 

of cachexia. Polymyxin at the dose of 1mg/ml was dissolved in drinking in water at fed to 

the mice starting 13 weeks of age to sacrifice. Polymyxin – b sulphate works by killing the 

gram – negative bacteria in the gut, and due to it prolonged administration was expected to 

suppress activation and proliferation of immune cells in the ApcMin/+ mouse. Body weight, 

temperature were monitored throughout the course of the study. Mice were euthanized at 

20 weeks of age and muscle and organs were harvested for further analysis. 

 

4.3 METHODS AND MATERIALS: 

4.3. I ANIMALS 

  All animal procedures were approved by the University of South Carolina’s 

Institutional Animal Care and Use Committee. All mice were housed in standard cages and 

kept on a 12hr: 12hr light: dark cycle with the light period starting 0700 hrs. The mice were 

had an ad libitum access to water and food (standard rodent chow, cat. no. 8604 Rodent 

Diet; Harlan Teklad, Madison, WI). 12 week old C57BL/6 and ApcMin/+ mice were single 

housed and monitored for Body weight loss, Food intake and body temperature, till 

sacrifice. Pre measurements for body weight and body temperature performed on the 12 

week old mice and the ApcMin/+ mice were randomized into either the control (untreated) 

group or Antibiotic treated group. C57BL/6 mice were used as absolute controls against 

the treated and untreated ApcMin/+ adenoma model. A subset of the ApcMin/+  mice were 

treated with antibiotic (1mg/ml), via drinking water, starting 13 weeks of age till sacrifice. 
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Body weight and body temperature (rectal probe TH-5 Thermalert Monitoring 

Thermometer (PhysiTemp, NJ, USA) was monitored on alternate days (Fig 1).  

4.3. II ANTIBIOTIC TREATMENT ADMINISTRATION 

  Polymyxin b sulphate (Cat #, P4932, Sigma Aldrich, St. Louis, MO) was dissolved 

in drinking water (1mg/ml). Normal water bottle were replaced with medicated water 

bottles (15 ml capacity), in the treated cages. Medicated water was replenished everyday, 

to ensure that the mice had ad libitum access to the medicated water, throughout the course 

of the study.    

4.3. III TISSUE COLLECTION 

Mice were anesthetized by subcutaneous administration of a 

ketamine/xylazine/acepromazine (1.4mL/body weight) (Southern Anesthesia, Columbia, 

SC) cocktail as described earlier 106. Plasma was collected prior to tissue collection via 

blood draws through the retro-orbital sinus. Muscle and liver were collected during the 

sacrifice and were either snap frozen in liquid nitrogen and stored at - 80⁰C. Intestine 

segments were isolated, cleaned and cut into 4 equal segments of the small intestine and a 

segment for the colon. These were used to account for tumor burden in the cachectic Apc 

Min/+ mice. 

4.3. IV IL – 6 PLASMA LEVELS 

IL – 6 levels in the plasma were quantified using the Mouse – IL – 6 ELISA kit 

(Life Technologies, NY, USA, Cat # KMC0062). Briefly, 25 – 50ul of plasma was diluted 

down to 100ul and the ELISA was performed according to manufacturer’s instructions.  
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4.3. V RNA EXTRACTION, CDNA PREPARATION AND REAL – TIME PCR  

Real time PCR was performed as described previously 76. Briefly, RNA was 

isolated by homogenizing the liver tissue in Trizol (Invitrogen, NY, USA, Cat # 15596), 

followed by a chloroform/isopropyl alcohol extraction. cDNA and RT-PCR assays were 

performed using reagents purchased from (ABI, Foster City, USA). Primers for 

Haptaglobin14, PFK77 and PEPCK77 primers purchased from IDT (Coralville, IA, USA). 

Data was analyzed using the comparative cycle threshold [Ct] method calculated by the 

ABI software.   

4.3.VI WESTERN BLOT:  

Western blots were performed as described previously 78. Briefly, a piece of the 

liver was cut, weighed and placed in 10 times the volume of Muller Buffer. The tissue was 

homogenized in the buffer using a glass or glass homogenizer. The resultant homogenate 

was quantified for protein concentration using the Bradford assay. All protein samples were 

diluted to 3ug/ul concentration to aid equal loading on the gel. Homogenates were 

fractionated on SDS – PAGE acrylamide gels (6% - 15%) and transferred overnight onto 

a PVDF membrane. The membrane was Ponceaued following the transfer to ensure equal 

loading. The PVDF membrane was then probed for STAT-3, mTOR, S6, Akt, MMP-2, p-

p65, GAPDH (Cell Signaling Technology, Danvers, MA, USA) gp130 and Albumin (Santa 

Cruz Biotechnology). A corresponding secondary antibody was used along with the 

chemiluminescent agent Quantum ECL (BioExpress, Kaysville, UT, USA) to visualize the 

protein bands. ImageJ (NIH, Bethesda, MD, USA) software was used for quantification of 

the integrated optical density (IOD) for Western blot bands. 
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4.3. VII PERIODIC ACID SCHIFF’S STAINING 

A small piece of liver tissue was mounted on an OCT block and sectioned at -16⁰C. 

The slides were fixed in Carnoy’s fixative for 10 minutes followed by 30 minute incubation 

in the Periodic Acid. Slides were then washed with water and exposed to Schiff’s reagent 

for 30 minutes. The slides were counter stained with Hematoxylin, dehydrated through 

alcohol grades and mounted using Permount. The slides were imaged the next day using 

the DP70 Olympus microscope.  

4.3. VIII STATISTICAL ANALYSIS 

All statistical analysis was performed using the GraphPad Prism software. One – 

Way ANOVA was used to test the effect of body weight, muscle mass, fat mass and organ 

mass with WT and  the two (treated and untreated) ApcMin/+ groups. Student Newman – 

Keul post hoc analysis was used to analyze the difference between groups. Pre – planned t 

– test was used to study the effect of treatment on the ApcMin/+. Values were expressed as 

Mean ± SE. Significance was set at p<0.05.  

 

4.4 RESULTS:  

4.4.I EFFECT OF POLYMYXIN TREATMENT ON BODY MASS, TISSUE MASS, BODY 

TEMPERATURE AND PLASMA ENDOTOXIN LEVELS IN THE APC
MIN/+

 MICE:  

 

Severely cachectic ApcMin/+ had a significant loss of body and muscle mass along 

with a loss of body temperature as measured by rectal temperature measures as compared 

to the healthy non – tumorous C57BL/6 mice. As shown previously and replicated in this 

study plasma endotoxin levels were also elevated in cachectic mice as cachectic mice as 

compared to the WT C57BL/6 mice. Splenomegaly, and hepatomegaly were some other 
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characteristics observed in the cachectic ApcMin/+ mouse as compared to the WT animals 

(Fig 2A, 2C).  Six weeks of antibiotic treatment with Polymyxin B did not attenuate any 

the cachectic characteristics with Polymyxin treated mice losing similar amounts of body 

mass, muscle mass, fat mass and body temperature. Levels of plasma endotoxin were also 

not different between the treated and untreated ApcMin/+ mice (Table 1). However, antibiotic 

treatment did attenuate splenomegaly with the treated mice exhibiting a 22% decrease in 

spleen size (p = 0.03) in the polymyxin treated group (Fig 2A). Interestingly, Polymyxin 

treatment also significantly reduced size of mesenteric lymph nodes as compared to both 

the WT and the cachectic ApcMin/+ mice (Fig2B), but did not attenuate hepatomegaly 

exhibited by the cachectic mice (Fig 2C).  

4.4. II EFFECT OF POLYMYXIN TREATMENT ON LIVER METABOLIC SIGNALING  

We have previously shown and replicated in this study that liver glycogen stores 

are severely depleted in the cachectic mice. Treatment with polymyxin attenuated glycogen 

stores as compared to the untreated ApcMin/+ mouse (Fig 3A, 2B). Neither liver glycolytic 

enzyme PFK mRNA nor gluconeogenic enzyme PEPCK mRNA was significantly altered 

by Polymyxin administration to the cachectic mice (Fig 3C). Anabolic protein markers 

were not affected by antibiotic treatment in the cachectic mice (Fig 3D).    

4.4. III EFFECT OF POLYMYXIN TREATMENT ON LIVER INFLAMMATORY SIGNALING 

  Administration of polymyxin did not reduce plasma IL – 6 levels in the treated 

cachectic mice (Fig 4A). Consequently, STAT-3 phosphorylation was sustained in the 

polymyxin treated ApcMin/+ liver.  Hepatic haptaglobin (Fig 4C) the downstream target 

of STAT-3 too was sustained after Polymyxin treatment. Hepatic protein expression of NF-
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kB, MMP-2 and albumin were unaffected by Polymyxin treatment in the ApcMin/+ mouse 

(Fig 4D). 

4.5 DISCUSSION: 

Plasma endotoxin levels are increased with the progression of cachexia in the 

ApcMin/+ mouse, which corresponds to an increase in gut barrier permeability38. Elevated 

levels of endotoxin have the potential to exacerbate the underlying chronic inflammatory 

response to cancer in the ApcMin/+ mouse.  The effect of an antibiotic treatment on cachexia 

progression from a non – cachectic to severely cachectic stage had not been examined.  

Thus, we determined if an antibiotic treatment consisting of administration of the gram – 

negative targeting antibiotic – Polymyxin  could modulate an adjunct source of systemic 

inflammation and attenuate cachexia progression and liver dysfunction in the ApcMin/+ 

mouse. We report that administration of Polymyxin inhibited splenomegaly and mesenteric 

lymph node swelling in the ApcMin/+ mouse, indicating a possible suppression of immune 

cell proliferation in the treated mice. Moreover, attenuation of splenomegaly and 

mesenteric lymph node swelling did not attenuate cachexia progression in the antibiotic 

treated mice, possibly due to the inability of Polymyxin to attenuate plasma endotoxin and 

IL – 6 levels in the treated mice.  

Administration of antibiotics in during infection is known to act independently of 

the immune response to eliminate the causative bacteria, thus speeding up the recovery 

process. Prolonged administration of antibiotics to the pre – cachectic ApcMin/+ mice 

suppressed immune activation as evidenced by the shrinkage spleen and mesenteric lymph 

node weights.  Thus is possible that bacterial toxins play a role in spleen and mesenteric 

lymph node enlargement in the cachectic mice. Surprisingly, antibiotic treatment did not 
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reduce plasma endotoxin levels in the treated mice. The lung and the liver are the major 

sites for endotoxin clearance in the body107,108 and liver dysfunction is seen in the severely 

cachectic ApcMin/+ mice with a suppression of Akt/S6 signaling along with upregulation of 

CHOP a marker for liver apoptosis (Narsale et.al, 2014, Manuscript 1).As polymyxin 

treatment did exhibit systemic effects of immune suppression, the still elevated levels of 

endotoxin could be possibly due to the inability of the cachectic liver and lungs to clear 

systemic endotoxin levels brought in by the portal vein.  

Hepatomegaly was not alleviated in the treated mice, possibly due to increased 

plasma IL – 6. Hepatic STAT-3 the downstream target of IL – 6, and haptaglobin a target 

of STAT-3 were elevated both in the treated and untreated ApcMin/+ mice.  Haptaglobin is 

a component of the acute phase protein response responsible for the degradation of skeletal 

muscle during cachexia8, which can be activated by STAT-3 and ER stress80, 104, but its 

suppression leads to decreased survival in the ApcMin/+ mouse23. Thus increased 

haptaglobin levels tough detrimental to muscle mass are essential for survival.  

Consequently, we do not see an attenuation of muscle of fat loss in the treated ApcMin/+ 

mice as compared to untreated controls. Our previous studies have established that liver 

STAT-3 phosphorylation is independent of plasma IL – 6 levels109. But administration of 

polymyxin did not attenuate liver STAT – 3, despite systemic suppression of immune 

proliferation. Activation of STAT- 3 along with IL – 6 can also be attributed to IL – 10, an 

anti – inflammatory cytokine often secreted by Kupffer cells in response to endotoxin as 

part of the local inflammatory response in the sinusoid110. It is known that nutrients and 

other toxins from the intestinal blood supply are first received by the liver via the portal 

vein. Kupffer cells in the liver are the first cells responsible of screening and clearance of 
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any toxins like endotoxin entering the system via the portal vein. It can be speculated that 

prolonged antibiotic treatment is unable to suppress hepatic APR due to a basal suppression 

of NF-kB along with sustained endotoxin and IL – 6 exposure.  

Antibiotic treatment did not attenuate liver gluconeogenic and glycolytic markers 

PEPCK and PFKmRNA respectively, nor did it attenuate liver glycogen stores indicating 

that administration of antibiotic treatment did not affect systemic hypermetabolic state99, 

109. Assuming that the antibiotic treatment did suppress systemic immune proliferation, this 

would suggest that the metabolic load from immune proliferation is redundant in the 

sustenance of a hypermetabolic state, making the hypermetabolic state a possible outcome 

of tumor burden and acute phase response proteins in the ApcMin/+ mouse. In conclusion, 

antibiotic treatment attenuated splenomegaly and mesenteric lymph node swelling in the 

ApcMin/+ mouse, independent of loss of body mass loss and elevated plasma endotoxin and 

inflammatory cytokines. But antibiotic treatment did not attenuate STAT-3, APR, 

metabolic markers or suppressed Akt/S6 signaling in the liver.  
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Table 4.1: Body weight, body temperature, endotoxin levels and muscle mass in 

the WT, treated and untreated ApcMin/+ mice 
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Figure Legends:  

Fig 4.1: Schematic Experimental Design: Mice were introduced into the study at 13 

weeks of age and underwent pre measurements for body mass, activity and blood 

measurements. The mice were given 1mg/ml of antibiotic in drinking water starting 14 

weeks of age till sacrifice. The control group received normal drinking water. Post 

measurements were performed the week before sacrifice at approximately 19 weeks of age. 

Mice were analyzed for body weight, rectal temperature, food intake and activity through 

the course of the study.  

Fig 4.2: Effect of Polymyxin treatment on tissue mass in the Apc
Min/+

 mice: A) Spleen 

Weight B) Mesenteric Fat Weight C) Liver weight. Values expressed as Mean ± SE. p<0.05. 

A One – Way ANOVA was used to test differences between WT, treated and untreated 

Apc
Min/+

 groups. Student – Newman Keul’s t-test was used to test for differences between 

any two groups.  A pre – planned t –test was used to analyze the effect of polymyxin 

treatment in the Apc
Min/+

 mouse. “a” represents significantly different from the untreated 

Apc
Min/+

 mouse 

Fig 4.3: Effect of Polymyxin treatment on liver metabolic signaling: A) Liver glycogen 

stores B) Morphometric analysis of liver glycogen stores C) Expression of metabolic 

mRNA levels PFK and PEPCK in the treated and untreated cachectic Apc
Min/+

 mouse D) 

Protein synthesis signaling intermediates.  Values expressed as Mean ± SE. p<0.05. A pre 

– planned t –test was used to analyze the effect of Polymyxin treatment within the Apc
Min/+

. 

“a” represents significantly different from the untreated Apc
Min/+

 mouse 
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Fig 4.4: Effect of Polymyxin treatment on hepatic inflammation: A) Plasma IL -6 levels 

B) Liver STAT-3 levels and  C) Expression of metabolic mRNA levels for haptaglobin  D) 

Liver Protein expression of inflammatory markers in the treated and untreated cachectic 

Apc
Min/+

 mouse.  Values expressed as Mean ± SE. p<0.05. A pre – planned t –test was used 

to analyze the effect of cachexia in the Apc
Min/+

. “a” represents significantly different from 

the untreated Apc
Min/+

 mouse 
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Figure 4.1: Schematic Experimental Design: Mice were introduced into the study at 13 weeks of age and underwent pre 

measurements for body mass, activity and blood measurements. The mice were given 1mg/ml of antibiotic in drinking water 

starting 14 weeks of age till sacrifice. The control group received normal drinking water. Post measurements were performed 

the week before sacrifice at approximately 19 weeks of age. Mice were analyzed for body weight, rectal temperature, food 

intake and activity through the course of the study.  
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Figure 4.2: Effect of Polymyxin treatment on tissue mass in the Apc

Min/+
 mice: A) Spleen Weight B) Mesenteric Fat 

Weight C) Liver weight. Values expressed as Mean ± SE. p<0.05. A One – Way ANOVA  with Student – Newman Keul post 

hoc was used to test differences between WT, treated and untreated Apc
Min/+

 groups. A pre – planned t –test was used to 

analyze the effect of polymyxin treatment in the Apc
Min/+

 mouse. “a” represents significantly different from  untreated Apc
Min/+
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Figure 4.3: Effect of Polymyxin treatment on liver metabolic signaling: A) Liver glycogen stores B) Morphometric analysis 

of liver glycogen stores C) Expression of metabolic mRNA levels PFK and PEPCK in the treated and untreated cachectic Apc
Min/+

 

mouse D) Protein synthesis signaling intermediates.  Values expressed as Mean ± SE. p<0.05. A pre – planned t –test was used 

to analyze the effect of Polymyxin treatment within the Apc
Min/+

. “a” represents significantly different from the untreated Apc
Min/+
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Figure 4.4: Effect of Polymyxin treatment on hepatic inflammation: A) Plasma IL -6 levels B) Liver STAT-3 levels and  

C) Expression of metabolic mRNA levels for haptaglobin  D) Liver Protein expression of inflammatory markers in the treated 

and untreated cachectic Apc
Min/+

 mouse.  Values expressed as Mean ± SE. p<0.05. A pre – planned t –test was used to analyze 

the effect of cachexia in the Apc
Min/+

. “a” represents significantly different from the untreated Apc
Min/+

 mouse 
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CHAPTER 5 

OVERALL DISCUSSION 

  

  Overall, the purpose of this study was to look at the role of liver function with 

cachexia progression using the ApcMin/+ model of cancer cachexia. Liver function for the 

purpose of this study was defined as markers of liver inflammation, metabolic function and 

protein synthesis and cachexia progression was measured by tracking body weight and 

muscle and fat mass. We report the novel finding that ER stress pathways are activated in 

the liver of non – cachectic mice along with a suppression of liver glycogen stores and the 

gluconeogenic enzyme PEPCK and an IL – 6 independent activation of STAT-3. However 

cachexia progression leads to activation of the ER stress induced apoptotic marker CHOP, 

suppresses phosphorylation of Akt and S6 independent of mTOR and a STAT -3 dependent 

acute phase response. Interestingly, cachexia progression downregulates the inflammatory 

mediator NF –κB along with its downstream target MMP-2. Changes in liver function 

related to inflammation and protein synthesis are independent of IL – 6, tumor burden or 

activated immune responses as suppression of systemic IL – 6 and endotoxin levels failed 

to affect these pathways during cachexia progression. On the other hand, decrease in tumor 

burden independent did attenuate metabolic processes in the liver along with improving 

liver glycogen stores.  
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Cachexia Progression in the ApcMin/+ can be characterized by a gradual IL – 6 dependent 

loss of muscle mass starting 14 weeks of age. We have previously established that during 

this period the mice also exhibit fat loss, gut barrier dysfunction, elevated plasma endotoxin 

levels, hypertrophy of the spleen, elevated liver triglycerides levels, anemia and insulin 

resistance19, 38, 72, 106. In this study we extend our finding in the ApcMin/+ to the role of liver 

during cachexia progression. Analysis of liver pathology with establishes that severely 

cachectic mice display a regenerative phenotype along with signs of liver injury . However, 

mitotic marker ERK phosphorylation was inhibited in the cachectic liver suggesting an 

inhibition of growth. Since the mice used for pathology and the ones used for the rest of 

the analysis come from two different subsets, it is possible that they follow different 

trajectories of cachexia progression. However, both results indicate a disruption of liver 

function in severely cachectic mice.  Interestingly, we see an upregulation of the ER stress 

markers in liver prior to the onset of cachexia. Since IL – 6 levels in plasma are elevated 

only during cachexia progression; induction of ER stress could be induced by elevated 

levels of plasma MCP -180. MCP – 1 is a chemokine secreted by the tumor 

microenvironment to attract more macrophages to the site of the tumor 18. However, MCP 

– 1 has been recently implicated in the induction of ER stress in the liver leading to the 

inhibition of NF – κB80. We see similar results in the liver as cachexia progression 

surprisingly suppresses liver NF-κB expression in the face of elevated plasma IL – 6 and 

endotoxin levels. MMP-2, a fibrosis and angiogenic marker and the downstream target of 

NF – κB is also suppressed actively with cachexia progression. This suppression possibly 

aids in protecting the liver from fibrosis, thus maximizing liver function111. On the other 

hand, cachexia progression steers liver signaling towards an ER stress induced inhibition 
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of protein synthesis pathways in the liver along with activation of the apoptotic marker 

CHOP in the severely cachectic mice. However it is interesting to note that inhibition of 

Akt/S6 phosphorylation is independent of mTOR phosphorylation. This dysregulation the 

Akt/mTOR/S6 pathway could be due to stimulation of mTOR by the amino acids broken 

down and shuttled to the liver to sustain the body’s acute phase response and basal 

metabolic rate8. However, severely cachectic mice lack the ability to utilize this mTOR 

phosphorylation as expression of the downstream marker S6 remains suppressed. Also, the 

current study only measures the baseline activity of Akt/S6 phosphorylation, and it is 

possible that stimulation of hepatocytes by an anabolic stimulus like glucose could still be 

able to stimulate Akt and S6 phosphorylation in the ApcMin/+ .   Despite the suppression of 

anabolic processes in the liver, the energy demand continues to be high as estimated from 

the upregulation of the glycolytic and gluconeogenic liver enzymes. However, it is possible 

that due to the ER stress induced inhibition of protein synthesis these do not get converted 

to functional proteins in the liver. Taken together, cachexia progression is detrimental to 

liver function and possibly survival with inhibition survival markers like Akt, ERK and 

NF-κB and upregulation of the apoptotic marker CHOP104, 112, 113. As cachexia progression 

in the ApcMin/+ mice is a function of liver plasma IL – 6 levels and IL – 6 mediated STAT-3 

activation can induce acute phase protein haptaglobin, we investigated the role of IL – 6 

inhibition on liver function in the  ApcMin/+ mouse 

Administration of PDTC, a global STAT-3 and NF-kB inhibitor attenuated body 

weight loss in the ApcMin/+ mouse by sparing of both muscle and fat loss. PDTC further 

exacerbated hepatomegaly and did not suppress plasma IL – 6 levels seen in the ApcMin/+ 

mouse indicating a partial effect of the drug on indices of cachexia progression. Analysis 
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of muscle tissue treated with PDTC exhibited an attenuation of STAT-3 and NF – κB levels, 

however the treatment had no effect on hepatic STAT-3 levels. Furthermore, contradictory 

to our hypothesis, NF – κB mediated liver inflammation was actively suppressed in the 

cachectic liver, minimizing the efficacy of PDTC in the liver. PDTC suppresses activation 

of STAT-3 and NF – κB by downregulating reactive oxygen species stimulated by chronic 

inflammation21, 29, 114. However its ineffectiveness in the liver, points towards a lack of 

oxidative damage. PDTC treatment affected tumor distribution by reducing the number of 

large tumors either by inhibiting of tumor growth or by shrinkage of large tumors. It is 

important to note that the shift in tumor distribution was seen during a sustained IL – 6 

response. Reduction in tumor burden is associated with an attenuation of basal metabolic 

rate and PDTC treated mice did attenuate hepatic glycogen and lipid stores as compared to 

the untreated ApcMin/+ mice29. Administration of PDTC also suppressed PEPCK mRNA, 

but surprisingly it further upregulated the glycolytic enzyme PFK. However a recent study 

with the endotoxemia model has shown that PDTC administration can suppress PEPCK 

mRNA possibly via suppression of systemic ROS, validating its efficacy in the liver115. It 

was speculated that sustained plasma IL – 6 response could be reason sustained STAT-3 

and haptaglobin activation in the liver post PDTC  treatment, but his hypothesis was 

rejected when STAT-3 and haptaglobin levels were sustained even in the sFcgp130 mice, 

which reduced plasma IL – 6 levels in the fusion protein treated ApcMin/+ mice. This is the 

first study to report the effect of trans – IL -6 inhibition on liver function during cachexia 

progression in the ApcMin/+ mouse. We report that inhibition of trans – IL6 signaling rescues 

fat loss, but does not rescue total lean mass. Further, sFcgp130 administration has no effect 

on hepatomegaly. Liver Akt/mTOR/S6 pathway and liver inflammatory pathways are also 
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not altered by fusion protein administration. Thus deterioration of liver function during 

cachexia progression seems to be independent of IL – 6 which contributes towards wasting 

of peripheral tissue to feed the metabolic demands of the liver. However, IL – 6 is not causal 

to liver dysfunction in the ApcMin/+ mouse. 

The severely cachectic ApcMin/+ mouse shows elevated levels of plasma endotoxin. 

As endotoxin levels are only observed towards the later stages of cachexia due to increased 

gut permeability it is unclear if these levels of LPS further exacerbate cachexia progression 

in the ApcMin/+ 16. Antibiotic treatment was administered to the ApcMin/+ mouse prior to 

cachexia initiation to eliminate gut bacteria in the ApcMin/+116. Surprisingly administration 

of gut bacteria in the ApcMin/+ mouse suppressed splenomegaly and mesenteric lymph node 

swelling. As both the spleen and the mesenteric lymph nodes are secondary lymphoid 

organs associated with activation of immune cells, it can be speculated that antibiotic 

administration suppressed cellular immune response in the ApcMin/+ .  However, this also 

opens up the possibility that proliferation of immune cells in the ApcMin/+ mouse is a 

function of systemic bacteria that leads to splenomegaly, independent of the plasma IL – 6 

levels which were comparable to the untreated ApcMin/+ mouse. Surprisingly, plasma 

endotoxin levels were also not affected by the antibiotic treatment opening up the 

possibility that elevated levels of plasma endotoxin in the ApcMin/+ are due to the inability 

of the cachectic liver/lungs to filter plasma endotoxin levels108.  However this suppression 

of immune responses did not attenuate liver dysfunction as characterized in the ApcMin/+. 

Thus in conclusion, liver function is disrupted with cachexia progression in the ApcMin/+ 

mouse, however this dysfunction is not related to the pro – inflammatory cytokine IL – 6, 

which is primarily responsible for muscle and fat wasting or factor responsible for inducing 
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hypertrophy of spleen and mesenteric lymph nodes. Liver dysfunction could be a response 

to chronic ER stress in the liver, possibly initiated by exposure to plasma MCP – 1 level. 
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APPENDIX A 

SUPPLEMENTAL DATA  

 

 

 

 

 

 

 

 

 

 

 

Table A.1: Body weight, temperature, endotoxin levels and muscle mass in the 

WT, treated and untreated ApcMin/+ mice 
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Figure A.1: Effect of Norfloxacin/Ampicillin treatment on tissue mass in the 

Apc
Min/+

 mice: A) Spleen Weight B) Mesenteric Fat Weight C) Liver weight. 

Values expressed as Mean ± SE. p<0.05. A One – Way ANOVA was used to test 

differences between WT, treated and untreated Apc
Min/+

 groups. Student – Newman 

Keul’s t-test was used to test for differences between any two groups.  A pre – 

planned t –test was used to analyze the effect of polymyxin treatment in the Apc
Min/+

 

mouse. “a” represents significantly different from the untreated Apc
Min/+

 mouse 
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Figure A.2: Effect of Norfloxacin/Ampicillin treatment on liver metabolic 

signaling: A) Liver glycogen stores B) Morphometric analysis of liver glycogen stores 

C) Expression of metabolic mRNA levels PFK and PEPCK in the treated and untreated 

cachectic Apc
Min/+

 mouse D) Protein synthesis signaling intermediates.  Values expressed 

as Mean ± SE. p<0.05. A pre – planned t –test was used to analyze the effect of 

Polymyxin treatment within the Apc
Min/+

. “a” represents significantly different from the 

untreated Apc
Min/+

 mouse 
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Figure A.3: Effect of Norfloxacin/Ampicillin treatment on hepatic inflammation: A) 

Plasma IL -6 levels B) Liver STAT-3 levels and  C) Expression of metabolic mRNA levels 

for haptaglobin  D) Liver Protein expression of inflammatory markers in the treated and 

untreated cachectic Apc
Min/+

 mouse.  Values expressed as Mean ± SE. p<0.05. A pre – 

planned t –test was used to analyze the effect of cachexia in the Apc
Min/+

. “a” represents 

significantly different from the untreated Apc
Min/+

 mouse 
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APPENDIX B  

DETAILED PROTOCOLS 

1.GENOTYPING 

Genotyping sheet. cages, food, water, cage lids, cage cards/card holders, ear puncher, 

scissors, 1.5ml ependorf tubes, 15ml falcon tube, PCR tubes, Pipettes (p1000, p100, p20), 

pipette tips, primers, master mix, nuclease free water, thermocycler. 

1. Turn on a water bath to approximately 55 ºC with 1-2 inch of water in the 

bottom 

2. Wean pups- once mice are 4-5 weeks of age wean the pups by separating the 

male and the females into new cages (limit 5 mice/ cage). 

3. On the genotyping sheet fill out the date of birth and the cross that the pups 

came from. Also write out animal numbers for the mice. 

4. Punch the ear of the mouse and write down the ear and mouse number on both 

the genotyping sheet and the cage card. 

5. Once the ear is punched, pinch the tip of the tail and snip just above your finger 

nails (do not take more than 2-4mm) and put into an eppendorf tube labeled 

with the animal number (not the ear punch).
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6. Once this is complete for all of the animals make up the tail digest buffer. In a 

large (15ml) falcon tube add 200ul of tail buffer/ sample and 5ul of proteinase 

K/ sample. Mix by inversion. 

7. Add 200ul of tail digest buffer to each eppendorf tube containing the tail and 

place in a blue tube rack.  

8. Place tube rack in the water bath overnight (be sure the water covers the bottom 

of the tubes) 

9. Turn Dri-bath to 95ºC 

10. Label PCR tubes 

11. Once bath is at 95 place ependorf tubes with tail digest into heat block for 10 

minutes. 

12. Set up PCR reaction
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2. RNA ISOLATION   

 

1. Label three sets of sterile 1.5mL tubes 

2. Homogenize samples in 1mL of Trizol on ice. Be sure to clean the polytron 

with ethanol and water between samples. 

3. Transfer homogenate to sterile 1.5mL tube and spin samples at 10,000 rpm 

for 15 minutes at 4ºC 

4. Transfer supernatant to new 1.5mL tube 

5. Add 200ul of chloroform to each sample and shake vigorously for 20 

seconds (DO NOT VORTEX). 

6. Spin samples at 10,000 rpm for 15 minutes at 4ºC 

7. Be sure work space is clean. 

8. Transfer clear supernatant to new 1.5mL ependorf tube being careful not to 

disturb the white protein interface. 

9. Add 500ul of isopropanol and let sit at RT for 15-20 minutes or at 4ºC for 

longer 

10. Centrifuge at 10,000 rpm for 15 min at 4ºC (should see white pellet after the 

spin) 

11. Carefully dump off supernatant and add 1ml 75% EtOH (DEPC) to pellet 

and vortex 

12. Centrifuge at 9,500 rpm for 5 minutes at 4ºC 

13. Carefully dump off supernatant and add 1ml 75% EtOH (DEPC) to pellet 

and vortex 
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14. Centrifuge at 9,500 rpm for 5 minutes at 4ºC 

15. Carefully dump off supernatant. Pipette any extra EtOH out of the tube 

being cautious not to disturb the pellet 

16. Dry upside down on a tube rack for 5-15 minutes (bigger pellets take longer) 

17. Resuspend pellet in DEPC H2O (15-40ul) 

18. Heat in dry bath at 60ºC for 10 minutes 

19. Pipette up and down to mix 

20. Read on nanodrop or put 2ul of RNA in 800ul of dH2O and read in quartz 

cuvette 

21. Run on an agarose gel or denaturing gel to check quality of RNA 

22. Proceed to make cDNA or store in -80ºC 
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3. CDNA SYNTHESIS 

Materials: 

 

1. Sterile (RNAase/DNAase Free) Pipet tips 

2. PCR tubes 

3. DEPC H2O 

4. RT CDNA kit 

5. Eppendorf tube 

6. Cold block to hold PCR tubes 

 

Methods: 

1. Make cDNA cocktail from contents of RT cDNA kit (High Capacity cDNA kit 

from Applied BioSystems) 

2. for each sample you will need: 

DEPC water 4.2ul 

10X RT buffer 2ul 

dNTP mix 0.8ul 

10X random primers 2ul 

Reverse Transcriptase 1ul 

3. Load 1ug of RNA into the appropriate tube and volume it to 10ul with DEPC 

H2O. 

4. Load 10ul of cDNA cocktail to each tube and pipet to mix 

5. Centrifuge to get all contents to bottom of tube 
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6. Place tubes in thermocycler on program #25/ cDNA 407 on Dr. Fayad’s thermal 

cycler. 

 

4. REAL TIME PCR 

1. Calculate the number of sample that need to be run. Do not forget to include in 

the blanks for each primer 

2. Dilute cDNA to 1:10 or 1:100 dilution such that GAPDH CT is close to 18 

3. 10ul of cDNA is needed per well. Samples will be run in duplicates atleast 

4. Use the following table to calculate the volume of Sybr Green, Primers and 

dH2O needed for the entire reaction 

 

 

  

 

 

 

 

TLR 4

1X

2X SYBR Green Master Mix 12.5

Forward Occ 1

Reverse Occ 1

dWater (sterile filtered) 0.50

15.0

cDNA 1/100 10

25
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5. Set up the PCR plate (Applied Biosystems, 96 well PCR Plate). Make sure to 

draw out the plate plan with all the samples and the blank in advance in your 

notebook 

6. Add the cDNA (10ul) followed by the Master mix (15ul) to each well in the 

plate 

7. Cover the plate using the appropriate plate cover 

8. Run plate in the Applied Biosystem 7300 machine in Dr. Davis’s lab 

9. Before starting the run  

 Add the Sybr green tag for all the wells 

 Add Dissociation stage 

 Change volume to 25ul 

 Save the SDS file 

10. Hit Start and wait till you see the estimated time left (Approx. 2hr 40 mins) 

11. Check on the PCR periodically, it is essential to switch the machine off as 

soon as the run is completed to enhance the life of the Bulb. 
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5.  IL – 6 ELISA (BD BIOSCIENCES) 

Day 1: 

Prepare 10N NaOH solution 

Prepare Coating Buffer - 100 mls 

0.713g NaHCO3, 

0.159 Na2CO3 

pH to 9.5 with 10N NaOH 

Make up volume to 100ml 

Prepare 10X PBS (1 liter) 

80g of NaCL 

11.6g Na2HPO4 

2.0 g KH2PO4, 

2.0g KCL 

pH to 7.0 

Make up volume to 1L 

Prepare 1X PBS - 1 L 

100ml of PBS 10X 

900ml of H2O 
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Assay Diluent Buffer (to be used within 3 days) 

1X PBS 50ml + 5mls of FBS 

Store at 4℃ 

Wash Buffer 0.05% Tween 

1X PBS - 900mls 

Tween 20 - 450 µl 

Store at 4 degrees 

Reconstitute Standard (if using a new kit) 

Refer to the Instruction/Analysis Certificate 

It will give you the quantity of standard: 

E.g. Quantity: 68ng/vial 

Add 1ml of deionized water to this vial. 

This will give you a standard stock of 68 ng/ml. Aliquot this in 50ul tubes and freeze 

immediately at -80℃ 

 

1. Calculate the standard curve + samples required wells 

2. Prepare capture antibody solution in Coating buffer 

 1 in 250 dilution with 100 µl per well 

 Thus for 96 wells we will need 9600ul 

 1- 250 

 x - 9600 

 = 9600/250 = 38.4ul of capture antibody + 9561.6 µl of Coating buffer 

3. Add 100 µl of the above diluted antibody in all the wells. 

4. Seal the plate with the ELISA plate sealer and leave the plate at 4℃ for atleast 8 hours 

(I have used the coated plate 4 days later and works fine) 
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Day 2: 

For the standard curve the highest point is 1000 pg/ml 

Dilute the stock down with 14.7ul of stock (68ng/ml) in 985.29ul of diluent assay 

buffer. 

Make serial dilutions of the stock from 1000 - 7.8pg/ml 

Add 300µl of assay diluent to each tube expect for the 1000ng/ml tube 

Add 300 µl of the 1000ng/ml to the 500ng/ml tube which already contains 300µl of 

assay diluent. Mix really well, vortex and add 300ul of the 500ng/ml to the 250ng/ml 

tube so on so forth till 15.6ng/ml. 

The zero value is plain assay diluent buffer 

Label tubes for the number of samples available. Dilute samples 1:1 (50ul of serum 

+ 50ul of Assay diluent buffer). Mix well and set on ice. 

1. Remove the plate coated with the coating antibody on Day 1 from 4 degrees 

2. Aspirate out the coating antibody from all the wells 

3. Wash wells with Wash buffer prepared on Day 1. Add around 300ul of Wash 

buffer to each well. To remove the wash buffer turn plate upside down and tap 

above a tray or waste container. (3 washes) 

4. Add 100ul of Diluent buffer to each well and block the plate for 1 hour. (This 

buffer contains FBS and hence can be used for blocking) 

5. After an hour tap the plate upside down to remove all the blocking solution and 

wash with 1X wash buffer 3 times 

6. Make sure all the well are well emptied after the third wash with no bubble in any 

of the wells. 

7. Add 100ul of the diluted standard or samples to each well 

8. Incubate at RT for 2hrs 

9. During the incubation calculate the amount of detection antibody and SAv-HRP 

required. 

1. For 96 wells we need 9600ul of the working detector. So we make 

10,000ul of the working detector. To 10mls of diluent Assay buffer add 

40ul of Detection antibody. To this add 40ul of SAv - Substrate. Mix well, 

vortex. Keep aside. 

10. Aspirate all the standards and samples from the plate post 2hrs and wash with 

Wash Buffer 5 times. 

11. Make sure all the bubbles and film are removed the end of the 5th wash.  
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12. Add 100ul of Working detector to the wells 

13. Incubate for another hour. 

14. Wash 7 times with wash buffer with a 30s to 1min incubation with the wash 

buffer for each wash 

15. Before the last wash prepare the substrate TMB cocktail. For the 96 well plate 

mix 5mls of the Reagent with 5mls for reagent B. Mix well by vortexing. This 

mixture is light sensitive and turns blue on overexposure to light. Incubate in dark 

till ready to use. 

16. Add 100ul of the substrate solution to each well and monitor the colour 

development over next 30 mins. 

17. During this incubation prepare 2N sulfuric acid solution. (980ul of H2SO4 

concentrated + 9020mls  of water) 

18. Over incubation of with the TMB substrate leads to color development in the 

blank. But too little incubation distorts the standard curve at the lower 

concentrations. 

19. 30minutes usually is good enough incubation period. But stop the reaction earlier 

if colour starts developing in the negative. Stretch it beyond 30 mins if no 

gradation is seen between  the lower 3 standards - 0, 7.8, 15.6 

20. Add 50ul of the stop solution 

21. Colour changes from blue to yellow.  

22. Read the plate at 450nm and 570nm. 
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7. ENDOTOXIN ASSAY 

 

Endotoxin Assay - Hycult Biotechnology 

Limulus Ameboyte Lysate Chromogenic Endpoint Assay 

Only use Endotoxin free water and tips for the assay 

Reconstitute the standard vial by referring to the batchcontrol item sheet. Vortex the 

standard solution for atleast 5 minutes after reconstitution. Reconstituted standard has a 

concentration of ~ 50nEU/ml. Aliquot the standard in endotoxin free Eppendorf tubes, 

seal with parafilm and store @ -20℃ for further use. 

Reconstitute the LAL assay vial with 4ml of endotoxin free water. Quickly 

make 1ml aliquots (solution turns yellow with time) and freeze them at -80℃. 

The LAL reagent is light sensitive, hence it’s better to cover the Eppendorf’s with foil. 

Reconstitute the STOP solution- Use 1part of glacial acetic acid + 1.5 parts water to 

prepare dilutions depending on the final number of wells to be used. 

The standards in duplicates take up 2 columns. 

On the template sheet draw out the number of samples + the standards and calculate the 

total number of wells to be used. 

Remove the plate from the kit. Do not remove the strips/plate from the bag unless the bag 

has reached room temperature. Otherwise there is a risk of condensation forming on the 

wells. 

Count the equivalent number of endotoxin well strips on the plate. Remove the excess 

strips and place them in the re-sealable bag obtained with the plate. Make sure 

the desiccator pouch is in the bag while resealing the strips.  Store the strips back at 4℃  

Label eppendorf tubes for standards and samples. 

For standards: From the reconstituted stock - Take 50ul of the ~50EU/ml standard and 

add it to 35ul of endotoxin free water. This gives you a working standard of 30EU/ml. 

make the following concentrations with the standards. Thus for every subsequent 

standard, make serial dilution to a factor of 3. For this fill up all 
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the standard Eppendorf’s with 100µl endotoxin free water (EFW). Add 50ul of 30EU/ml 

working standard to the tube labelled 10 EU/ml. Pipette vigorously to allow the standard 

to mix completely. Now transfer 50µl from the 10EU/ml concentration to the 

next Eppendorf with a concentration of 3.3EU/ml. 50ul of standard added 

to 100ul for EFW for every subsequent dilution will give the following standard 

dilutions. 

 

10 10 S1 S1 

3.3 3.3 S2 S2 

1.1 1.1 S3 S3 

0.37 0.37 S4 S4 

0.123 0.123 S5 S5 

0.041 0.041 S6 S6 

0.014 0.014 S7 S7 

0 0 S8 S8 

 Sample dilutions can be varied depending on the availability of the samples and if they 

fall within the standard curve. But the general standard for samples is 1:1 i.e. 25µl of 

sample + 25 µl of EFW for samples that do not require heating (50µl of sample in 

duplicate) and 5µl of sample + 45µl of EFW for samples that are heated in a water bath 

for 10minutes. (10ul of sample in duplicate). 
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Sample preparation - without heating 

Take 25µl of sample and dilute it with equal amounts of EFW. Mix thoroughly with a 

pipette and transfer it to the appropriate well on the plate. (You would need 50ul of the 

sample if you are running the assay is duplicates). 

After adding all the standards and the samples take a blank reading of the plate at 

405nm.  This is the background reading for the sample without the LAL reagent, to 

eliminate any colour contamination after the final reading. Note this reading down as the 

'Pre" reading 

Add 50ul of reconstituted LAL reagent to each well. 

Read the plate again at 405nm and not this reading down as the 0min reading. 

Read the plate every 10minutes after that to check on the absorbance of 10EU/ml 

standard. Once the absorbance for 10EU/ml standard reaches ~0.8. Take the plate out and 

add 50µl the diluted stop solution. Add the stop solution in the same order as the LAL 

reagent to reduce variability in reaction time and hence the final readings. 

Read the plate again and mark this reading as STOP. 

 

Sample preparation - with heating 

Serum samples contain compound like albumin which can bind to endotoxin and inhibit 

its detection by the assay. For such samples: 
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Take 5ul of the sample and dilute it with 45ul of EFW. Mix thoroughly with a pipette in 

the Eppendorf tube. (Double the volume if you need to run the samples in duplicates). 

Fill up a dry heat block wells with water and set it to reach 75 deg. Place the diluted 

samples in the water bath for 10 mins. 

After the incubation, place the tubes in a centrifuge and give the tubes a quick spin to get 

all the diluted sample to the bottom of the tube. (Do not spin for too long as the endotoxin 

because of its weight would tend to accumulate to the bottom. 

Mix the spun down sample and add 50ul of it to the plate. 

After adding all the standards and the samples take a blank reading of the plate at 

405nm.  This is the background reading for the sample without the LAL reagent, to 

eliminate any colour contamination after the final reading. Note this reading down as the 

'Pre" reading 

Add 50ul of LAL reagent to each well. 

Read the plate again at 405nm and not this reading down as the 0min reading. 

Read the plate every 10minutes after that to check on the absorbance of 10EU/ml 

standard. Once the absorbance for 10EU/ml standard reaches ~0.8. Take the plate out and 

add 50ul the diluted stop solution. Add the stop solution in the same order as the LAL 

reagent to reduce variability in reaction time and hence the final readings. 

Read the plate again and mark this reading as STOP. 
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Analysis of the data 

From the STOP values subtract the Pre - LAL values to eliminate any internal colour 

variation (esp. with plasma samples which are hemolyzed). 

After this subtract the zero reading at 0 minutes from STOP reading. 

After subtracting the background and the 0 reading from the final readings plot the 

standard curve as a logarithmic plot in excel. 

Use the slope of this logarithmic curve to identify the endotoxin content in each sample. 

8. HISTOLOGY  

Deparaffinazation of sections 

1. Heat the incubator to 60 degree Celsius 

2. Check solutions (100% EtOH, 50%EtOH/50% xylene, 100% Xylene) 

3. Change solution which are old and are low 

4. Place slides in the incubator at 60deg for 30 mins 

5. Place in 100% xylene for 3 mins 

6. Put in 2nd 100% xylene for 4 mins 

7. Back in the first xylene for 4 mins 

8. 100% EtOH for 2 mins 

9. 100% EtOH of 2 mins 

10. 95% EtOH for 1 min 

Slides are deparrafinzed 
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Hematoxylin and Eosin Sectioning 

          Deparaffinize slides 

1. Post deparaffinization dry slides for a few minutes (air dry) 

2. Dip a few times in hematoxylin (5- 6X) then leave for 7mins 

3. Dip in H2O - 6 times then let it sit in H2O for 5 mins 

4. 6 dips in distilled water 

5. 4 dips in distilled water 

6. 6 dips in ammonia H2O 

7. Place in H2O for 10 mins 

8. Place in alcohol - eosin for 3 mins 

9. Dehydrate with 6 dips of each of the following 

1. 35% EtOH 

2. 50% EtOH 

3. 75% EtOH 

4. 95% EtOH 

5. 95% EtOH 

10. Clear in xylene 

1. One dip in 50% EtOH xylene 

2. 2 mins in 100% xylene 

3. 1 min in 2nd 100% xylene 

Periodic Acid Schiff's Staining 

Stains glycogen content in the tissue 
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Solutions required: 

1. Carnoy's Fixative: Prepare in fume hood 

100% EtOH: 60ml 

Chloroform: 30ml 

Glacial Acetic Acid: 10ml 

2. Periodic Acid Solution: (0.5% w/v) - Prepare fresh  

Periodic Acid: 50mg (Periodic Acid is always stored in the desiccator) 

dH2O: 10ml 

3. Schiff's Reagent to be removed to Room Temperature 30 minutes before use 

Protocol: 

1. Thaw sections with cold Carnoy's fixative on petri dish. Leave it for a couple of 

minutes 

2. Incubate slides with Carnoy's fixative at RT for 10mins 

3. Dry slides for 10mins 

4. Wash slides with dH2O 3 times 

5. 0.5% Periodic acid solution for 30mins 

6. Wash slides with dH2O for 25 minutes 

7. Schiff's reagent for 25mins 

8. Wash in running H2O for 10mins 

9. Dehydrate slides with graduated alcohol 

10. Clear in xylene 

11. Mount with mount medium 
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9. Protein Estimation 

 

Homogenization of tissue  

Obtain 3 samples from instructor.  Store the samples in liquid nitrogen until 

homogenization. 

2.  Prepare Mueller buffer.  This can be stored at room temperature.  You will need 1 

mL/100mg tissue of Mueller Buffer.  To make a 15 mL solution of Mueller buffer, add 

the following solutions obtained from the instructor and add to a centrifuge tube:     

 

1.5 mL 50 mM Hepes (pH 7.4) 

1.5 µL 0.1% TritonX-100 

120 µL 4 mM EGTA 

300 µL 10 mM EDTA 

2.25 mL 15 mM Na4P2O7 

750 µL 100 mM β-glycerolphosphate 

9.14 mL deionized H2O 

Immediately before adding the Mueller buffer to the samples, add the following protease 

inhibitors to the solution:    

 15 µL leupeptin (50 µg/uL)  

150 µL (0.2 M) PMSF   

 3.  Prepare diluent buffer.  Add the following solutions:  

 3.0 mL 100% glycerol  

1.5 mL 100 mM Na4P2O7  

1.5 mL 500 mM EGTA  

5 µL 1 mM β-mercaptoethanol  

 4.  Put the Mueller buffer on ice.  Have a 600 mL beaker with deionized H2O and 

another 600 mL beaker with weak acid (splash of glacial acetic acid).  Also, have a test 
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tube rack with 3 eppendorf homogenization tubes (1.5 ml, write the names of tissue and 

your initials) and some Kim-wipes nearby.  Have a 600 mL beaker with ice and a 

homogenization tube.  Also have a beaker for waste.  

5. Weigh the samples on a scale. Trim down samples with a blade if necessary (wt. < 50 

mg). Put the samples in the labeled 1.5 ml eppendorf and back in liquid nitrogen.  

6.  Put the sample in the homogenization tube.  If the sample sticks to the side of the 

eppendorf, flick it with your finger to dislodge it.  Immediately add 1 mL/100mg tissue of 

Mueller buffer to the sample.  Homogenize in an up-and-down motion for a few seconds 

at a time.  This prevents heat from accumulating.  Also, turn the homogenizer off and on 

every few seconds.  When the sample is liquefied, use a transfer pipette and put back into 

original eppendorf.  Rinse the transfer pipette with deionized H2O.  Rinse the glass probe 

first with weak acid, dry with Kim-wipe, rinse with deionized H2O, and wipe with Kim-

wipe.  Rinse the homogenization tube 3 times with weak acid and 3 times with deionized 

H2O and pour into waste beaker. Make new tubes with labels.   

7.  Centrifuge the samples for 15 min at 4°C for at 10K rpm (Centrifuge is located in the 

cell culture room).  Transfer the supernatant into a new eppendorf tube and add half of 

original amount of Mueller of diluent buffer.  Put these tubes in the ice. We don’t use all 

volume of each sample we homogenized here. 
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Bradford Assay: 

Using a plate reader (Bio-Rad)  

8. Get BSA from instructor and dilute from stock to 1ug/µL working solution. Prepare a 

1:5 dilution with deionized H2O of Bio-rad Bradford reagent. You will need 25 mL of 

1:5 dilution of Bio-rad Bradford reagent.  

9. Obtain 96-well microplate and pipet 300 µl of 1:5 dilution of Bradford reagent to each 

well as necessary.  

10. Pipet BSA (0, 2, 4, 6, 8, 10ul) and 2 µl of samples to wells.   

11. Cover the plate with foil and wait 15 min.  

12. Place the plate in the safire2 and read absorbance at 595nm. All absorbance readings 

need to be within 10% of CV in each duplicate  

13. Make a standard regression curve with BSA and calculate the protein concentration of 

samples.  

   

Things you need to report  

1. Name of samples and their weights  

2. Absorbance of each sample (BSA and your samples)  

3. Calculate CV (%) of each sample. CV defined as the ratio of the standard deviation to 

the mean:                                        

CV (%) = (/)*100 

 

4. Graph to determine your standard curve (protein concentration vs. absorbance)  

5. Calculate the concentration of your samples based on the standard curve.  
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SDS PAGE & Western blotting 

1. Make gel by taking into consideration the molecular weight of the protein to be probed 

for.  

10% acrylamide gel (10 mL/gel) 

3.9 mL H2O 

3.4 mL 30% bis: acrylamide mix 

2.5 mL 1.5 M Tris (pH 8.8) 

100 µL 10% SDS 

100 µL 10% ammonium persulfate 

8 µL TEMED (gel will start to harden once this is added) 

Pour into a mold (leave room for comb) and covered with a small amount of isopropanol 

to prevent evaporation. Wait until the gel is polymerized (about 20-30 min). 

5% acrylamide stacking gel (5 mL/gel): 

3.4 mL distilled H2O 

830 µL 30 % acrylamide mix 

630 µL Tris (1.0 M, pH 6.8) 

50 µL 10% SDS 

50 µL 10% ammonium persulfate 

5 µL TEMED (gel will start to harden once this is added) 

*Acrylamide is a potent cumulative neurotoxin: wear gloves at all times. 

Wait 20-30 min for gel to solidify. Remove comb and rinse gels with distilled H2O. 

Remove from stand and aspirate the wells. 

2. Preparation of samples: 

Determine volume of protein extract based on the tester blot data. Pipette into 

Eppendorfs. Add the same volume of 2x SDS dye. Boil samples for 5 min. Briefly 

centrifuge to collect all liquid at bottom of tube and pipette into wells. 

Running buffer: 1x SDS, 1 L per bucket. Dilute from 5x SDS stock. 
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3. Loading the gel: 

Connect gels to holder and put in case. Add running buffer. Load each sample into each 

well. Add 10 µL of marker to one lane (not in the middle of the gel). Add remaining 

running buffer. Connect to power supply (Protein is negatively charged so it will run 

from negative to positive-black to red). Run gel at appropriate voltage (200 V for 1 h). 

Stop when all dye has leaked into the running buffer. 

4. Transfer to membrane: 

You will need: 

Methanol 

Membrane 

2 pieces of blotting paper 

2 sponges 

1 waffle sandwich 

Pyrex dish 

Transfer buffer 

Spacer 

* Don’t touch the membrane with your fingers; use tweezers instead. Oils and proteins on 

the fingers will block efficient transfer and create dirty blots. 

* Make sure the paper and membrane are cut smaller than sponges and to the same or 

slightly larger than the gel. 

Pre-soak membrane in methanol (few minutes) to enhance the transfer process. 

Disconnect power and remove gels. Remove one piece of glass and carefully cut away 

stacking gel and throw away in trash. Use deionized H2O and a spacer to help remove gel 

into dish with deionized H2O. 

The sandwich consists of 1) Waffle (black side down) 

2) Sponge 

3) Blotting paper 

4) Gel 
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5) Membrane 

6) Blotting paper 

7) Sponge 

8) Waffle (white side) 

Bubbles were smoothed out with gel in each layer with spacers. Get the transfer holder. 

Put the sandwich in (black to black). Add ice pack. Put stir bar at bottom of container. 

Add transfer buffer. Pack entire unit on ice on a stir plate. Circulate the running buffer. 

Transfer with ice pack for an hour at 370 mA. 

5. Ponceau Staining 

After the membrane transfer, the membrane was rinsed with distilled H2O and put in a 

plastic dish with enough Ponceau stain to cover the membrane. It was put on a shaker for 

5 min and the stain was poured off. The membrane was rinsed with dH2O until the 

membrane was no longer pink. Put the membrane in the plastic sheet and scan in to the 

computer to check for success for transfer. 

6. Western Blotting: 

1. Put the membrane in a plastic container with protein side up, pour a blocking solution 

(5% TBST milk, 5 g of milk + 100 mL of TBST) and put the container on a rocker for 30 

min. 

2. Add primary Ab at appropriate dilution in 5% TBST milk. 

a. Example. 1:1000 dilution = 10 µl Ab in 10 ml milk 

3. Incubate overnight at 4 °C, 1 h at RT, or 30 min at 37 °C with gentle rocking. 

4. Wash 3 x 5 min with TBST with shaking. 

5. Wash 1 x 10 min with TBST with shaking. 

6. Add secondary Ab at appropriate dilution in 5% TBST milk 

a. Example. 1:2000 dilution = 5 µl Ab in 10 ml milk. 

7. Incubate 1 hour at RT with gentle rocking. 

8. Wash 3 x 5 min with TBST with shaking. 

9. Wash 1 x 10 min with TBST with shaking. 
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10. Make ECL or ECL+ reagent. 

ECL 

a. Wrap 15 ml plastic tube with foil. 

b. Add 4 ml of Solution A. 

c. Add 4 ml of Solution B. 

d. Vortex. 

ECL Quantum Plus - BioExpress 

a. Wrap 15 ml plastic tube with foil. 

b. Add 1 ml of Solution A. 

c. Add 1ml of Solution B. 

d. Dilute with 1ml of TBST if needed.  Vortex. 

11. Remove excess TBST by draining edge of membrane with Kim-wipe. 

12. Lay membrane in flat dish. 

13. Add ECL (1 min) on top of membrane. 

14. Remove excess ECL by draining edge of membrane with Kim-wipe. 

15. Place membrane face down (protein side down) on piece of plastic wrap. 

7. Imaging 

Case A: Using an image scanner on the 5th floor. 

16. Place your membrane on the scanner and scan it in. 

Case B: Developing a film on the 3rd floor. 

16. To use machine, turn switch from “Standby” to “Run” and the red “Feed film” light 

will turn on. 

17. Turn off the light of the room. Fold up edges and tape membrane in film cassette face 

up (protein side up). 

a. To have film in correct orientation, the notch should be in the upper left corner. 

18. Put on a piece of film on membrane in the darkroom. 
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19. Expose film for 5 min to develop. 

20. In dark, open the lid of the developer, turn the film upside-down and sideways, and 

feed into the machine until it catches. You can turn on the light or put in another piece of 

film when the “Feed Film” light comes on again. 

21. Turn machine to “Standby”. 

22. Mark on film the edges of the membrane and the protein marker with a sharpie. 
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INTRODUCTION AND AIMS 

 

Cachexia is a wasting syndrome observed during the later stages of chronic diseases 

like cancer, AIDS, COPD. With the advent of modern medicine which mostly deals with 

managing chronic diseases like cancer rather than curing it, quality of life in such patients 

becomes critical. Colorectal cancer (CRC) is a leading cause of cancer mediated deaths and 

is associated with onset of cachexia during the advanced stages of the disease. CRC 

associated cachexia is characterized by loss of fat and muscle, chronic systemic 

inflammation, increased gut permeability, anemia and anorexia in patients28, 31.  The Apc 

Min/+ model of cancer cachexia mimics most of these symptoms with the mice losing muscle 

mass at later stages of the disease which co – relates to increased IL -6 levels in the mouse. 

Chronic systemic inflammation exacerbates wasting in the mouse accelerating mortality 

rate in the given model36, 117.  

Interleukin 6 (IL -6) is a pleiotropic cytokine, which is essential for wound healing 

and tissue repair when secreted in moderate amounts34, but chronic levels of IL – 6 lead to 

deleterious effects leading to the muscle and fat loss seen during cachexia in the ApcMin/+ 

mouse36. Acute exposure to IL – 6 is known to be protective as it can regulate macrophage 

infiltration to the site of injury and manipulate the immune system proliferation to counter 

the antigen attack. IL – 6 secretion post exercise is essential for satellite cell mediated 

muscle hypertrophy and growth and tissue repair response34. IL – 6 is also essential for 

insulin mediated glucose uptake in skeletal muscle after a single bout of exercise118. But 

chronic elevation of IL – 6 is detrimental as seen during most chronic diseases. Cancerous 

polyps and tumors along with immune cells are a major source of systemic IL – 6, leading 
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to deleterious wasting symptoms seen during cachexia. Chronic activation of IL - 6 

antagonizes acute IL -6 responses. Pretreatment with IL – 6 exposure leads to a reduction 

in insulin mediated glucose uptake in both liver and skeletal muscle.  Chronic IL – 6 

exposures can also lead to glycogen depletion in the liver, possibly due to inhibition of 

glycogen synthase44. Gluconeogenesis is also blunted with IL – 6 downregulating the 

activity of key glycolytic enzymes like phosphoenolpyruvate carboxylase in the hepatic 

tissue and skeletal muscle. Administration of IL – 6 inhibitor suramin attenuates cachexia 

in the C – 26 colon carcinoma model by interfering with IL – 6 binding to its receptor119. 

This systemic inhibitor of IL – 6 is known to reduce IL – 6 activity in the liver, though its 

effect on liver function has not been studied. IL – 6 receptor antibody administration has 

also been shown to attenuate cancer cachexia both in the C – 26 and Apc Min/+ model of 

cachexia but the role of liver in this process has not been teased out117, 120. IL – 6KO mice 

are protected from cachexia, even in the presence of colon tumors, on the other hand muscle 

specific KO of IL – 6 signaling is also known to attenuate gastrocnemius loss in the LLC 

model of cachexia (unpublished data). Thus complete systemic KO of IL – 6 signaling is 

protective against cachexia but targeted therapies with the suramin, IL – 6RA or  skeletal 

muscle gp130 KO only attenuates muscle loss119. This indicates that the systemic action of 

IL – 6 contributes cachexia, rather than direct action of IL – 6 on muscle leading to muscle 

mass loss.  

Chronic IL – 6 exposures can upregulate expression of TLR-4 receptor on skeletal 

muscle sensitizing the body to other inflammatory mediators like endotoxin42. Systemic 

Endotoxin or LPS levels are also known to be elevated in certain models of cachexia like 

cardiac cachexia, colorectal/pancreatic cancer cachexia38, 121, 122. Increase in plasma LPS 
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levels is attributed to a change in gut permeability with chronic inflammation and change 

in blood flow rates to the gut. Increased gut permeability allows transport of bacteria and 

bacterial byproducts like endotoxin to the blood16. Increased endotoxin in the blood can be 

sensed by specialized innate immune receptor – Toll – like receptor 4 (TLR4), which can 

activate NF – κB, the classical pro – inflammatory pathway downstream. Other members 

of the TLR family like TLR5, TLR 2 can recognize bacterial remnants like flagellin and 

can also phosphorylate NF – κB downstream51. 

  Plasma concentration of serum cytokine MCP-1 is also shown to be elevated in the 

Apc Min/+ model of cancer cachexia18. Thus chronic inflammation during CRC induced 

cachexia can be sustained by multiple sources in the Apc Min/+ mice. Elevated serum levels 

affect both peripheral and visceral organs of the body. During cachexia, peripheral 

organs/tissues like skeletal muscle and adipose tissue experience atrophy, while the 

visceral organs are preserved or even undergo hypertrophy. Liver tissue is often known to 

hypertrophy during sepsis and trauma, with increased uptake of amino acids from the 

degrading muscle123. This increased rate of protein synthesis is often maintained to sustain 

the elevated energy demands of an activated immune response and proliferating tumor 

cells.  Degradation of skeletal muscle leads to increased concentration of free amino acids 

in the blood, but no known feedback loop exist to inhibit muscle degradation, with elevated 

levels of free amino acids in the blood. On the other hand, carbon skeletons taken up by 

the liver are degraded and the unused amino acids are excreted as urea, leading to excess 

N excretion seen with chronic diseases123, 124. Thus the liver feeds the chronic inflammatory 

response by breaking down skeletal muscle, which further secretes pro – inflammatory 

cytokines like IL -6 ensuing a vicious cycle. Prolonged exposure to IL – 6 leads to 
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expression of acute phase proteins in the liver like increased alpha 2 macroglobulin, CRP, 

fibrinogen and reduces other molecules associated with the CYP system, albumin etc8, 31, 

45.  

Chronic systemic inflammation thus seems to affect liver function by suppressing 

insulin mediated glucose production and upregulating utilization of amino acids to increase 

protein synthesis. It also elicits a varied acute phase protein response, leading to 

downregulation of key plasma proteins like albumin and CYP and increased expression of 

inflammatory markers like haptaglobin, fibrinogen, α2 – macroglobin8, 45. Liver function 

thus seems to be altered with chronic inflammation seen during cachexia, but its role in the 

development of cachexia has not been studied. It remains to be determined if liver function 

is altered early during cachexia initiation or if failure to sustain protein synthesis by the 

liver contributes to cachexia progression/ initiation during the later stages of the disease. 

Sepsis induced trauma is known to increase protein synthesis initially, but high levels of 

endotoxin suppresses liver function16. Plasma MCP -1 levels are also unknown to be 

upregulated early during cachexia18. Endotoxin is known promote both MCP – 1 and IL – 

6 secretions. Antibiotic treatment is known to suppress endotoxin mediated immune 

response leading to a suppression of systemic inflammation, including repression of 

immune cell proliferation in the spleen (preliminary data). Antibiotic treatment has been 

effective in attenuating plasma endotoxin levels in liver injury models with alcohol and 

sepsis55. Thus it would be interesting to see if antibiotic treatment would attenuate liver 

function by suppression of chronic immune response in the Apc Min/+ mouse 

 The overall purpose of the study was to determine if chronic inflammation affects 

liver functions contributing to cachexia progression.  
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Aim1: To determine if liver function contributes to cachexia progression in the Apc 

Min/+ model of cancer cachexia 

Rationale:  Chronic inflammation leads to loss of peripheral tissues like adipose and 

skeletal muscle. This loss is dependent on the pro – inflammatory cytokine IL -6 in the Apc 

Min/+ model of cachexia. The IL – 6 levels rise with the increase in tumor size in the Apc 

Min/+ mice from ~14 – 20 weeks of age. Endotoxin is up only at the later stages, ~ 20weeks 

of age with cachexia16. Cachexia, in the C – 26 model is known to suppress VLDL 

production in the liver, possibly leading to altered cholesterol and fat distribution via 

serum15. But the effect of this chronic inflammation on the liver function has not been 

studied. Chronic exposure to IL – 6 has been shown to reduce insulin stimulated glucose 

uptake in the liver, with increased inflammatory response and alteration of acute phase 

response. But if these alterations are observed early with the onset of cachexia or occur 

during the later stages of cachexia is not known.  

Aim 1.1: Is liver function altered in severely cachectic Apc Min/+ mice? 

Aim 1.2: Is liver function altered with cachexia progression in the Apc Min/+ mice? 

Aim 2: To determine if inhibition of IL – 6 signaling is necessary or sufficient to alter 

liver metabolic and inflammatory process in the Apc Min/+ model of cancer cachexia  

Rationale:  Chronic IL – 6 is known to suppress insulin mediated glucose uptake in 

hepatocytes and skeletal muscle. IL – 6 is also known to lead to skeletal muscle degradation 

in the cachectic Min mouse. Previous studies in our lab have shown that administration of 

IL -6RA attenuates skeletal muscle loss in the Min. Acute phase response is fueled by the 

degradation of skeletal muscle, with free amino acids being utilized as energy source in the 
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liver. Thus it would be interesting to study if inhibition of IL – 6 in the ApcMin/+ would lead 

to alteration/improvement of liver function. 

Aim 2.1: To determine if administration of PDTC attenuates/ alters liver function in 

severely cachectic ApcMin/+ mice 

Aim 2.2: To determine if administration of sgp130Fc attenuates/ alters liver function in 

severely cachectic ApcMin/+ mice 

Aim 3: To determine if antibiotic mediated immune suppression affects liver function 

in the cachectic Apc Min/+ mice model  

Rationale: Although the ApcMin/+ model exhibits an IL – 6 dependent atrophy, other 

cytokines like OSM, LIF, CNTF125, MCP -118, TNF – alpha, IL – 1 have also been 

implicated in cachexia progression. Bacterial endotoxin is upregulated late in the cachectic 

mice16. This increase is also observed in pancreatic cancer patients. Gut barrier function is 

the most likely cause for elevation of endotoxin in the mice16. Chronic IL – 6 is known to 

upregulate TLR4 expression in skeletal muscle42. Also TLR 4 expression is upregulated on 

the cachectic livers as compared to the wild type controls (Prelim data). TLR-4 activation 

leads to NF – kB phosphorylation the classical pro – inflammatory pathway. Endotoxin is 

also known to activate TLR 4 and MCP -1, a chemokine known to attract and activate 

macrophages inducing further inflammation 18, 126. But MCP – 1 levels are known to be up 

by 12 weeks on the Apc Min/+ signaling a role for MCP-1 in the initiation of cachexia.18. 

Thus endotoxin upregulation during later stages of cachexia may be additive rather than 

being the primary source of MCP – 1 in the Apc Min/+. Moreover, the macrophages attracted 

by MCP – 1 to the tumor have been shown to have an anti – inflammatory or M2 phenotype. 

Gene transcription of genes like IL – 4, IL – 10, IL – 13 is elevated in the macrophages 

residing in the intestinal tumor127. But there are no detectable levels of these cytokines in 
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the ApcMin/+ plasma. Chronic inflammation during cachexia progression is thus comprised 

of factors independent of IL – 6. In Aim 3 for the study we propose to target IL – 6 

independent mechanisms to suppress chronic inflammation. Antibiotic treatment is known 

to target bacteria by inhibiting the synthesis of bacterial cell wall. Elimination of bacterial 

component by antibiotics circumvents immune system activation leading to a suppressed 

immune response during infection. Hyperproliferation and activation of immune cells fuels 

the chronic pro – inflammatory response seen during cachexia. Splenomegaly seen with 

cancer cachexia is associated with secretion of IL – 6 family of cytokines from the 

spleen125. An aggravated or proliferating immune response is thus additive to chronic 

inflammation seen during cancer cachexia. The idea thus emerges that treatment with 

antibiotics would allow for inhibition of both immune cell proliferation and the subsequent 

secretion of proinflammatory cytokines by elimination of gut microbiota. Previous studies 

with antibiotic pretreatment for alcohol induced liver injury has proved to be protective 

from a chronic inflammatory response55. Considering the inflammatory cascade with 

cachexia is caught in a positive feedback loop, breaking this loop would logically serve to 

be beneficial to contain the inflammatory response.  

Antibiotics could be either specific to gram negative bacteria or gram positive 

bacteria. Since endotoxin is the primary component of gram negative bacteria, it would be 

interesting to see if elimination of Gram negative bacteria alone was sufficient to attenuate 

the inflammatory response seen during cachexia, or both gram positive and gram negative 

bacterial suppression would be necessary to suppress inflammation and subsequent muscle 

mass loss.  
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Aim 3.1: To determine if antibiotic treatment with Polymyxin attenuates chronic 

inflammation to attenuate liver function during cancer cachexia 

Aim 3.2: To determine if Norflaxacin/Ampicillin treatment attenuates chronic 

inflammation to attenuate liver function during cancer cachexia 

Limitations and Pitfalls:  

1) All mice are fasted prior to sacrifice to reduce variation in plasma glucose levels, 

protein synthesis rates in the mice. But starvation on its own can affect protein 

synthesis in the liver. Depending on the study the mice will be fasted either 

overnight or for 5 hours. This inherently can contribute to changes in p – mTOR 

and protein synthesis in the liver. The effect of starvation is striking when compared 

between the C57BL/6 and Apc Min/+ mice. The 5 hour fast upregulates the levels of 

protein synthesis marker p – mTOR as compared to the C57BL/6 mice but p – 

mTOR is downregulated in severely cachectic Apc Min/+ with overnight fasting. To 

keep eliminate the effect of fasting on the results of protein synthesis, control B6 

mice fasted for the exact same amount of time are used. Also we believe that effect 

of overnight fasting will be uniform between the Apc Min/+ groups (12 – 14 – 20 

weeks of age). Thus the primary comparison to detect mTOR upregulation would 

be amongst Min mice in different stages of cachexia. 

2) PDTC is a global inhibitor of systemic inflammation, has been shown to inhibit NF 

– B along with STAT-3. But since IL – 6 can through secondary mechanisms lead 

to NF – B activation, this could be considered as a secondary target for IL – 6. 

3) Antibiotic treatment to eliminate gut microbiota does suppress an immune 

response, but gut microbiota play an important role in breakdown of digested food 
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in the gut, where most of the nutrient absorption takes place. Thus elimination of 

microbiota might have side effects in terms of decreased or impaired nutrient 

absorption in the gut, which would be detrimental to the hypermetabolic state.  

4) Immune response during cachexia is known elicited against the tumor. The absence 

of an acute phase protein response during cancer increases mortality rate with tumor 

proliferation. Thus complete shutdown of the immune response might actually 

prove detrimental by allowing uninhibited tumor growth.
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Working Model:  

 

 

 

The Apc Min/+ model of cancer cachexia is characterized by intestinal polyps in the 

colon and the small intestine. Macrophages are recruited to the tumor micro environment 

to fight the tumor antigen often by secretion of chemokines like MCP -118, 128. But 

recruitment of these macrophages to the tumor is associated with tumor growth and 

cytokine secretion. As the tumor cells proliferate by evading apoptosis and cell cycle 

checkpoints, the inflammation cascades exhibiting a systemic pro – inflammatory 

response. The Apc Min/+  mice start developing polyps at around 10 weeks of age and 

cachexia is initiated 4 weeks later at around 14 weeks of age. By 18 – 20 weeks of age 
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these mice are severely cachectic with a greater than 10% loss of Body mass in terms of 

skeletal muscle and adipose tissue. Chronic inflammation defined by high plasma IL – 6 

levels, Splenomegaly, increased gut permeability, plasma endotoxin levels, increased 

plasma triglyceride levels is the underlying cause of the wasting and metabolic disorder 

observed in the cachectic mice16, 129. Aim 1 of this study will examine the role of chronic 

inflammation triggered by tumor burden on liver function. The liver is responsible for 

numerous body functions like maintaining blood glucose, secretion of albumin, beta – 

oxidation of fats and filtering of blood in the body15, 31. Aim 1 will establish the markers of 

liver function and chronic inflammation that are altered during cancer cachexia. Since Apc 

Min/+ is IL – 6 driven model of muscle wasting, Aim 2 of the study will examine the role of 

IL – 6 in altering liver function during cachexia. IL – 6 overexpression is known for 

induction of acute phase proteins and insulin resistance in the hepatic tissue and altering 

IL - 6 expression would tease out the specific role of IL - 6 on liver function with cachexia. 

Factors other than IL – 6 are also associated with chronic inflammation associated with the 

Min. e.g. IL – 6 RA antibody administration, does attenuate muscle wasting but does not 

attenuate spleen size. Also protein synthesis is not rescued with the IL – 6 receptor antibody 

treatment indicating the continued presence of a hypermetabolic state117. Increased gut 

permeability is associated increased endotoxin levels in severely cachectic mice16. Also 

tumor associated macrophages are known to secrete a host of cytokines and chemokines128. 

The tumors  themselves can secrete chemokine like MCP – 1 creating a cytokine milieu18. 

Induction of IL -6 family of cytokine like LIF, OSM are known to be upregulated in the 

Lewis lung Carcinoma (LLC) model and the C – 26 model of cancer cachexia8, 125. Though 

not measured in Apc Min/+ model, their secretion in plasma cannot be ruled out. LLC model 
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of cancer cachexia induces the secretion of IL – 6 family cytokines due to immune cell 

proliferation in the spleen. Aim 3 of this study will suppress chronic inflammation by 

treatment with antibiotics. Antibiotics would allow for elimination of gut and systemic 

microbes. Antibiotic treatment also suppressed immune proliferation as exhibited by 

attenuation of splenomegaly and lymph node proliferation. Suppression of immune 

response could possibly also interfere with homing of macrophages to the tumor site in the 

antibiotic treated mice. Hepatic tissue is sensitive to both increased cytokines levels in the 

blood and immune proliferation of Kupffer cells lining the liver sinusoids.  Aim 3 will 

therefore study the inhibition of systemic immune response on hepatic function in cachectic 

Apc Min/+ mice.  

Preliminary Data:   

The liver is one of the most metabolically active and hence one of the most 

important organs to maintain homeostasis. The liver is known to perform over 500 function 

in the body including production of serum proteins like albumin, maintenance of blood 

sugar levels, filtering of blood toxins, maintaining blood iron levels etc. The liver has a 

dual blood supply with oxygenated blood entering the blood via the hepatic artery and 

nutrient rich blood and endotoxin laced blood entering via the portal vein130.  The liver is 

equipped to with appropriate cellular architecture to detect foreign pathogens in the system. 

In the event of an infection the liver is known to alter production of acute phase proteins 

like albumin (decreased), fibrinogen, serum amyloid A (increased). The production of 

acute phase proteins requires a huge amount of energy increasing the body’s metabolic 

demands. During cancer, the tumor is known to utilize glucose to produce lactic acid. The 

excess lactic acid is in the blood is converted back to glucose via the Cori’s cycle, further 
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increasing liver metabolism. Liver mass increases during periods of prolonged infection 

and inflammation, but small increases in liver mass exponentially increase the energy 

demands in an accelerating the hypermetabolic state.    

Cancer cachexia is primarily diagnosed as the loss of fat mass and skeletal mass in the 

absence of starvation. It is also characterized by a hypermetabolic rate and chronic 

inflammation. Proinflammatory cytokines like IL – 6117, MCP – 118, endotoxin 16 have all 

been implicated in cachexia onset. The hypermetabolic state during cachexia is directly 

correlated to loss of skeletal muscle mass and adipose tissue, with cachectic patients 

exhibiting a higher body weight loss. Our lab has extensively studied the role of IL – 6 

dependent cachexia in the Apc Min/+ model of cancer cachexia. Skeletal muscle mass loss 

has been correlated to increasing levels of IL – 6, with administration of IL – 6 receptor 

antibody attenuating but not completely inhibiting muscle loss117. Interestingly whole body 

IL-6 knockout in the Apc Min/+ mouse rescues the skeletal muscle loss129, but this effect is 

not mimicked in the skeletal muscle specific knockout of the gp130 receptor – 

skmgp130KO (Table 1). Since IL – 6 has been shown to be the major driver for muscle 

loss in the Apc Min/+ mouse it can be implied that effects on organs other than skeletal muscle 

may also contribute to cachexia progression.
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 Table C. 1: Comparison of lean and fat tissue between skeletal muscle gp130 knock 

out (skmgp130KO) female mice, with and without the Apc gene mutation.  

 skmgp130 KO skmgp130 KO Apc Min/+ 

  Homozygote Heterozygote Homozygote Heterozygote 

          

N 5 9 1 4 

% Fat 18.4 15.09 8.1 9.84 

Mes Fat 332.7 349.4 235 235 

Lean Tissue 16.28± 0.42 17.08 ± 0.41 13.6 14.94 ± 0.62 

Gastrocnemius 106.6 ± 2.26 106.65 ± 2.33 60.5 59.5 ± 8.32 

Liver 900.8 ± 34.6 

1038.15 ± 

25.9 1148 1148.7 ± 93.8 

 

In a recent study using the C26 mouse model of cachexia it was shown that liver metabolic 

dysfunction occurs during cancer cachexia. The livers of the cachectic mice had diminished 

capacity to secrete very – low – density – lipoprotein (VLDL). This was shown to be 

responsible for the lower levels of serum triglycerides in the mice blood15. Interestingly the 

ApcMin/+ model of cancer cachexia exhibits high levels of plasma triglyceride in cachectic 

mice. Since both the Apc Min/+ and C26 are IL – 6 dependent models of cancer cachexia, 

this points to secondary factors other than IL – 6 influencing metabolic processes during 

cancer cachexia.  

Liver in the Apc Min/+ model of cancer cachexia shows an increased phosphorylation of 

STAT 3 the downstream target of IL – 6, in severely cachectic mice (Figure 1).  
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Upregulation of phosphorylated STAT 3 levels corresponded to cachexia progression in 

the Apc Min/+ mice. Liver homogenates from 12 week (non – cachectic), 14 week (pre – 

cachectic) and 18 – 20 week (severely cachectic) Min mice were probed for activation of 

p – STAT3. Hepatic protein samples show a graded increase in p – STAT3 levels in the 

12 – 4 – 20 week mice respectively.  

 

 

Figure C.2: p – STAT3 levels with cachexia progression. Phosphorylated STAT 

3 levels increased with progression of cachexia in the ApcMin/+ mouse.  

Figure C.1:  p – STAT3 levels in the liver increase in the severely cachectic ApcMin/+. 

Hepatic protein sample was probed for phosphorylated STAT3. Increased 

phosphorylation of STAT 3 levels in the 20 week old Apc Min/+ mice indicate local 

liver inflammation.   
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This increase in hepatic inflammatory markers was mimicked by the protein synthesis 

marker p – mTOR (Figure 3). Phosphorylation of mTOR went up significantly in the 

hepatic protein from 12 week Min mice to 20 week Min mice.  

 

  

Severely cachectic mice also exhibited an increase in liver glycogen levels in the severely 

cachectic Apc Min/+ mice compared to the C57BL/6 mice (Figure 4).  

 

 

Figure C.4: Hepatic Glycogen content. Hepatic Glycogen content was increased in 

severely cachectic Apc Min/+ mice as compared to age matched C57BL/6 mice at 20 

weeks of age. 

Albumin is a 65 kDa plasma protein synthesized in the liver. Albumin is known to be 

downregulated with cachexia31. Albumin is an abundant protein in the plasma and its 

Figure C.3: p – mTOR levels with cachexia progression, Levels of phosphorylated 

mTOR increased with cachexia progression for 12 – 20 weeks.  
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downregulation can thus be visualized by Ponceau staining.  A 65kDa plasma protein in 

the blood is severely downregulated in the cachectic Apc Min/+ mouse. This protein could 

be albumin signifying alteration in liver function with cachexia.  

 

 

Prior work from our lab has shown that administration of IL – 6 receptor antibody helps 

attenuate muscle loss by inhibition of protein degradation pathways in the skeletal 

muscle.  Spleen size, the marker for immune activation and proliferation is not attenuated 

post IL – 6 receptor antibody administration in the Apc Min/+117. But suppression of IL – 6 

mediated inflammation upregulated endotoxin levels in the Apc Min/+ mouse (Figure 6). 

This points towards room for redundancy in the IL – 6 dependent chronic inflammatory 

response in the Min.  It would thus be interesting to see if manipulating IL – 6 levels in 

the Apc Min/+ mouse rescues liver function with cachexia.  

As suppression of IL – 6 elevates endotoxin levels in the Min, endotoxin mediated 

inflammation could play a secondary role in the chronic inflammatory processes of the 

Min and studies confirm that endotoxin and MCP – l levels are up regulated in the 

severely cachectic Apc Min/+ mice16, 18. Endotoxin functions via the TLR 4 receptor and 

Figure C.5 Serum Albumin levels in cachectic ApcMin/+ mice 
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the liver expresses low levels of TLR 4 in the normal healthy mouse. But TLR – 4 

expression is upregulated in the cachectic livers (Figure 7).    

 

 

Figure C.7: ApcMin/+ mice upregulate TLR 4 expression 

on the liver 

Figure C.6: Effect of IL 6 receptor antibody administration on 

plasma endotoxin levels.  
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Endotoxin secretion can lead to MCP – 1, IL – 6 and TNF – alpha production. 

Very high levels of endotoxin in the blood are seen during septic conditions. Antibiotic 

have been used treat LPS related ailments seen with sepsis and alcohol induced liver 

injury. Interestingly pretreatment with antibiotics can attenuate LPS mediated liver injury 

induced by alcohol consumption55. Administration of antibiotics to suppress systemic 

inflammation in the Apc Min/+ mouse leads to a suppression of splenomegaly and lymph 

node enlargement.  

 

 

 

Research Design and Methods:  

Overall Research Design:  The overall purpose of the study is to monitor the role of liver 

function during the progression of cachexia. Chronic inflammation and energy deficit 

contribute heavily to the onset of cancer cachexia, but if liver dysfunction plays a role in 

cachexia development is yet to be determined.  

Figure C.8: Administration of antibiotics Polymyxin and 

Norflaxacin/Ampicillin led to attenuation of splenomegaly 

in the ApcMin/+ mouse. 



www.manaraa.com

 

167 

The title of the project defines a study that would study the role of “chronic 

inflammation” on “liver function”. Both chronic inflammation and liver function are a 

vague set of characteristics that need to be defined more clearly for the purpose of an 

experimental design setup. Chronic inflammation can be broadly classified into two 

components, the secreted inflammatory component (cytokines) and the cellular component 

(proliferation of immune cells). Both these compartments are engaged in a positive 

feedback loop allowing the inflammatory cascade to proceed. For the purpose of this 

project we would the secretory component of the cascade will examine IL -6, MCP -1 and 

endotoxin. Spleen size and lymph node size will be a measurement marker for the cellular 

compartment proliferation.  The liver as we know performs numerous functions in the 

human body, but for the purpose of this study we would define liver function in terms of 

protein synthesis, inflammatory response, ability for glycogen storage, fat deposition, 

fibrosis and measurement of ALT activity.  

Aim1: To determine if liver function contributes to cachexia progression in the Apc 

Min/+ model of cancer cachexia 

Rationale:  A recent study by Jones et. al. showed that liver production of very low density 

lipoproteins is suppressed with cachexia in the C26 model.  Effect of liver function in the 

Apc Min/+ mouse leading to cachexia has not yet been studied. The liver shows signs of 

dysfunction with cachexia with loss of albumin and increased production of acute phase 

proteins in the serum but a detailed study to see how liver function contributes to cachexia 

and cachexia progression has not been studied. IL – 6 levels are known to increase 

progressively with cachexia onset from 14 week of age onwards. MCP – 1 levels are 

increased earlier around 12 weeks in the Min mice, whereas endotoxin levels are increased 
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only in severely cachectic Apc Min/+ mice. It is would thus be interesting to see if liver 

function changes only in the severely cachectic mice or is altered progressively with 

correlating to skeletal muscle loss from 12 – 14 weeks of age. Aim of this study would thus 

first establish if liver function is altered in severely cachectic mice and if this alteration is 

progressive from 12 – 14 weeks of age.  

Aim 1.1: Is liver function altered in severely cachectic Apc Min/+ mice? 

Aim 1.2: Is liver function altered with cachexia progression in the Apc Min/+ mice? 

Experimental design for specific aim #1:  Experiment 1 will establish if markers of liver 

function change with cachexia. Apc Min/+ mice will be randomized into 3 groups at 

approximately 5 weeks of age. Age matched wild type (WT) controls C57BL/6 mice would 

be used as controls. The mice will be divided into 3 groups: Mice will be sacrificed at 3 

different ages: 12 weeks of age (non – cachectic stage), 14 weeks of age (pre – cachectic 

stage)38 and 18 – 20 weeks of age (severely cachectic stage)117. The Apc Min/+ mice start 

developing tumors very early at around 10 weeks of age131, 132, cachexia develops only 

around week 16. The mice will be monitored for body weights from the time of weaning 

to the time of sacrifice. Skeletal muscle, blood plasma, liver and spleen will be collected 

from these mice and stored at - 80°C till further storage. Total body weight loss at sacrifice 

will be calculated and mice falling within the non – cachectic, pre- cachectic and severely 

cachectic mice would be include to determine liver function. Excised livers from these 

mice will be used to determine liver function in terms of protein synthesis, glycogen 

content, fat content, fibrosis and inflammatory response. Western blot technique, RNA 

extraction and PCR techniques, Histology techniques – Hematoxylin and Eosin staining, 

PAS staining, Oil Red O staining, Trichrome staining, ELISAs and glycogen content assay 
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would be performed to track attenuation of liver progression. Two comparisons will be 

analyzed for the two aims proposed. Aim1.1 will compare animals from the 20 week group 

to the 20 week C57BL/6 mice. Aim 1.2 will compare 12 week – 14 week and 20 week old 

Apc Min/+ mice. Unpaired t – test and One Way ANOVA will be used for statistical analysis. 

P = 0.05  

Experiment #1:  This experiment will identify the markers and timeline for liver function 

alteration with cachexia, establishing the role of liver function in cachexia progression.   

Apc Min/+ male mice were will be bred with C57BL/6 female mice and genotype of 

the new borns will be identified by genotyping for the presence of APC gene mutation. The 

mice will be randomized into 3 different groups at 5 weeks of age. Group 1 will be the non 

– cachectic group to be sacrificed at 12 weeks of age, Group 2 will be the pre –cachectic 

group to be sacrificed at 14 weeks of age and group 3 will be the severely cachectic group 

and will be sacrificed at 20 weeks of age. The mice will be monitored throughout the length 

of the study for body weights and rectal temperatures. The animals will be fasted overnight 

prior to sacrifice and anesthetized with the ketamine/xylazine/acepromazine cocktail. 

Blood will be collected from these mice via retro – orbital puncture. Skeletal muscle, Liver 

and spleen will be excised from the mice at sacrifice, snap frozen in liquid nitrogen and 

stored at -80°C till further use. Based on the previous Apc Min/+ work done in the laboratory 

on female and male Apc Min/+ mice each of the Apc Min/+ groups will have 8 mice at the start 

of the experiment 129, 133. 

Table C. 2: Number of animals to be used for each of the groups for Aim 1: 

 Groups 
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 Non – Cachectic 

(12 weeks) 

Pre – cachectic 

( 14 weeks) 

Severely cachectic 

(20 weeks) 

C57BL/6 (WT) N = 6 N = 6 N = 6 

Apc Min/+ N = 8 N = 8 N = 8 

 

Primary Outcomes:  

Inflammatory markers:  Since IL – 6 is the primary driver of the inflammatory phenotype 

seen in the Apc Min/+ mice, activation of the IL – 6 signalling cascade will be confirmed. 

Activation of STAT – 3 via phosphorylation, activation of SOCS 3 would be measured via 

Western blot. If protein analysis proves to be inconclusive in mRNA levels for STAT-3, 

SOCS – 3 and the IL – 6 receptor gp130 would be measured.  The liver responds to an 

inflammatory stimuli by triggering the acute phase protein (APP) secretion. The levels of 

APPs like haptaglobin, fibrinogen and SAA would be measured at the mRNA and protein 

level in the liver homogenates of the ApcMin/+ mice and compared with age matched WT 

controls. For the IL – 6 independent mechanisms, spleen size between the different groups 

will be compared as a measure of immune cell proliferation. TLR 4 downstream cascade 

activating NF – κB will be estimated in terms of both protein and mRNA quantification in 

liver homogenates.  

Protein Synthesis/Degradation markers:  Infection or tumors are known to upregulate 

protein synthesis in the liver partially for the synthesis of APP, gluconeogenesis via the 

Cori’s cycle and due to the systemic hypermetabolic state. But proinflammatory cytokine 

secretion is also known to increase MMP levels in the liver. The mTOR cascade will be 

probed for to estimate rate of protein synthesis, with p – mTOR and its downstream targets 

4EBP-1 and ribosomal S6 kinase being measured using Western blot and quantitative PCR. 
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Protein degradation rate in the liver will be measured using matrix metalloproteinase 2 

(MMP – 2).  

Liver morphology analysis:  Liver morphology will be observed by hematoxylin and Eosin 

(H&E) staining. The C57BL/6 sections will be compared to severely cachectic Apc Min/+ 

mice tissue. Min liver morphology will be compared for the non – cachectic, pre – cachectic 

and severely cachectic mice. The stained sections will be compared for morphological 

changes in liver anatomy with cachexia progression. Liver sections of C57BL/6 mice 

would be used as controls.  

Liver glycogen content:  Liver glycogen content allows us to study if any energy reserves 

are preserved in the cachectic liver or do glycogen stores deplete with cachexia 

progression. Glycogen levels in the liver will be studied in by staining the cryostat sections 

with Periodic Acid Schiff’s (PAS) stain. A quantitative assay on liver glycogen content 

will be done using a colorimetric assay for glycogen measurement.  

Liver lipid content:  Liver lipid content will be measured using Oil Red O staining. 

Increased levels of pro inflammatory cytokines are known to increase lipolysis. The 

excessive fat can be broken down in the liver for energy. The Min model is hypermetabolic 

and comparing fat deposition in the liver from the non – cachectic to severely cachectic 

state will allow us to examine liver function with respect to fatty acid metabolism.  

Liver injury makers: 1) Presence of fibrotic tissue in the liver will be measured using 

trichrome staining. Liver injury is commonly observed under chronic inflammatory 

conditions, but if fibrosis occurs in the liver with cachexia is not known. 
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Liver injury makers: 2) Alanine aminoacyltranferase (ALT) measurement:  Plasma ALT 

levels are a marker for liver injury. The enzyme is usually located in liver parenchymal 

cells and allows the body to metabolize protein or more specifically alanine to glucose. Its 

presence in blood signifies liver injury. In a healthy mouse ALT levels usually range from 

17 – 77 U/I. 

Albumin content in liver and plasma: Liver synthesizes the protein albumin under normal 

healthy condition. During prolonged infections and cancer the production of albumin via 

the liver decreases. Albumin production is thus a marker for liver function and will be 

measured using Western blot and quantitative PCR. Since albumin is synthesized in the 

liver but is secreted in the blood, albumin protein levels will be analyzed by western 

blotting in plasma samples. 

Specific Methodology Aim #1:  

Genotyping: Litters born in a breeding cage will be weaned at 3 – 4 weeks of age and 

separated depending based on sex. The mice will be ear punched, given an identification 

number and a small piece of their tail will be sniped off. The tail snip will be digested in a 

cocktail of 200ul of tailing buffer and 5 µl of proteinase K. The sample will be vortexed 

and placed in a 37°C water bath overnight. The next day the tubes will be removed from 

the water bath and placed in a dry heat bath heated upto 95°C for 10 minutes. This will kill 

the proteinaseK activity. 2 µl of the tail digest will be used to run the PCR using the mutated 

APC gene primer. Apc gene primers - forward 5’ TGAGAAAGACAGAAGTTA 3”, 

reverse 5’ TTCCACTTTGGCATAAGGC 3’ will be used to amplify the template. The 

GoTaq based PCR will be run and the amplification product will be visualized under UV 
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light on a 1% agarose gel.  The well that show an amplified product band will be marked 

as the Apc Min/+ mice. The samples that do not show a band in the genotyping PCR will 

be marked as wild type C57BL/6 mice. 

Plasma collection: The mice will be anesthetized using either isoflurane of ketamine 

cocktail. Using a chelated glass capillary tube, blood will be collected via retro – orbital 

puncture. The collected blood will be stored in an eppendorf on ice. The blood will then be 

spun at 4°C for 10 minutes at 10,000 rpm. The supernatant plasma is transferred to a fresh 

eppendorf tube and stored at - 80°C till further use. 

Tissue collection: Mice will be given a subcutaneous injection of ketamine (90mg/kg BW) 

– xylazine (7 mg/kg BW) – acepromazine (1mg/kg BW). Muscle collection will be started 

as soon as the mouse stops responding to toe/tail pinch. Skeletal muscle tissue like 

Gastrocnemius, Soleus, Plantaris, Tibialis Anterior (TA) and Quadricep will be excised 

washed with PBS, dried on a gauze pad and weighed. The weighed tissue is wrapped in 

foil and snap frozen in liquid nitrogen. Visceral organs like the liver, spleen, heart and fat 

will be collected after the muscle, cleaned with sterile PBS, dried, weighed and snap frozen 

in liquid nitrogen. Tibia length is measured with calipers to estimate body size.  

Plasma IL – 6 levels: Plasma IL – 6 levels will be measured using the BD biosciences IL 

– 6 ELISA kit for mice. The plate is coated overnight with IL -6 antibody at 4°C. Samples 

are diluted 1:1 (50ul of plasma + 50 µl of diluent buffer), while serial dilutions of the 

standards are prepared ranging from 1000pg/ml to 15.6pg/ml. The samples will incubated 

in the coated plate for 2 hours and washed off with 5 washes. A second anti – IL 6 antibody 

will then be added to the plate and the plate will be incubated for 1 hour. The plate will 
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then be washed 7 times before the TMB substrate can be added to the plate for colour 

development. The colour development reaction is stopped after 30 minutes using 1% acetic 

acid as the stop solution. The plate is measured at 450nm wavelength. The standard curve 

is plotted after subtracting the blank and samples that fall off the curve are eliminated from 

the analysis. The samples falling on the curve are used to quantify plasma IL – 6 levels. 

Plasma Endotoxin levels: Plasma endotoxin levels will be determined using the Hycult 

Limulus Ambeocyte lysate (LAL) assay kit. 5ul of the serum will be diluted with 45ul of 

endotoxin free water and heated in upto 75°C for 10 minutes. Standard curve will be 

prepared via serial dilutions in endotoxin free water. Standards too will be heated at 75°C 

for 10 minutes. The plate will be read for background at 450nm wavelength. The LAL 

reagent shall be reconstituted and 50ul of the reagent will be added to each well, except for 

the controls. LAL reacts with LPS and turn yellow. Color development will be allowed for 

35 – 40 minutes after which the reaction will be stopped using 50ul acetic acid solution. 

The plate will be read at 450nm. The standard curve will be plotted as a sigmoidal curve 

after subtraction of the zero minute reading from the final reading. Concentrations of the 

samples will be calculated using the Michealis Menten enzyme kinetic reaction.  

RNA isolation: A small piece of liver will be cut and weighed. The tissue should be 

approximately 15mgs or smaller in weight. The cut tissue will be resuspended in 1ml of 

trizol and homogenized using a polytron homogenizer. The homogenate will be transferred 

to an eppendorf tube and set on ice. 200ul of chloroform will be added to the trizol 

homogenate and the tube will be shaken well for 15 – 30 seconds. The tube will be allowed 

to incubate at room temperature for 10 minutes and the spun at maximum rpm for 15 

minutes at 4°C. The supernatant will be removed and transferred to a fresh tube. More than 
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twice the amount of 100% EtOH will be added to the supernatant, to allow for RNA 

precipitation. The tubes will be incubated at RT for 10 minutes and spun at max rpm for 

15 minutes. The resulting pellet will be washed with 70% ethanol in DEPC water 

centrifuged at 9500rpm for 5 minutes and air dried at 60°C. The dried pellet is dissolved 

in approximately 40ul of DEPC water. The quality and integrity of RNA is checked using 

the spectrophotometric analysis and by running the RNA on a 1% agarose gel. A 

spectrophotometric ratio (A260/A280) of > 1.8 implies good quality RNA without and 

protein contamination. Agarose gel with 3 distinct RNA bands implies high quality non – 

degraded RNA. Once checked for quality and integrity the RNA sample is stored -80°C till 

further use.  

cDNA preparation: Isolated RNA will be converted to cDNA using the TaqMan cDNA 

synthesis kit. 1ug of RNA will be used to make the cDNA cocktail. Once synthesized the 

cDNA can be stored at -20°C till further use. The cDNA thus prepared is run with GAPDH 

primers on a normal PCR thermal cycler with GoTaq for 18 -20 cycles. The resulting 

product is run on a 1% agarose gel to check for cDNA quality.  

Real time PCR: Once the quality of cDNA is determined to be good, the cDNA is amplified 

using the primers of interest and SyBr Green. The GAPDH gene is used an internal control/ 

housekeeping gene and the gene of interest is compared against it. The Δct method is used 

to calculate differences in gene expression between groups with respect to GAPDH.  
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Table C.3: Primer sequences that will be used for real time PCR amplification of 

target genes 

 

 

Protein Extraction:  Liver tissue is cut and weighed. The tissue is suspended in 10 times 

the volume of Muller buffer. (E.g. 30mg tissues is suspended in 300ul of Muller buffer on 

ice). The tissue is then quickly homogenized using a glass on glass homogenizer. The 

Muller buffer homogenate is transferred from the glass tube to an eppendorf tube and stored 

on ice. The glass homogenizer and glass tube is cleaned out with dilute acid followed by 3 

deionized water washes, before homogenizing the next sample. Once all the samples are 

homogenized, they are spun at 10,000 rpm for 15 minutes at 4°C. The supernatant is 

transferred to afresh eppendorf tube and diluent buffer is added to the homogenate. The 

homogenate is half the amount of Muller buffer added 150ul). The homogenate will now 

be vortexed and 2 µl of the homogenate will be used to determine the protein concentration 

using a Bradford assay. Once the protein concentration of the homogenate is estimated, a 

3ug/µl aliquot is prepared for the homogenate using 2:1 Muller buffer: Diluent buffer 

cocktail. The 3ug/µl aliquot is the working stock used to run Western blot analysis.  
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Western Blot: Protein extract are run on SDS – PAGE gel and transferred on to PVDF 

membrane overnight. Once transferred the Ponceau staining will be done to determine the 

uniform transfer onto the membrane. The membrane will then be probed with primary 

antibody, washed with TBST 3 times and incubated with an HRP tagged secondary 

antibody. Chemiluminescent agent will be used to estimate the HRP bound to the 

membrane. The chemiluminiscence is quantified by autoradiography techniques. The 

developed blot is scanned onto a computer and integrated optical density (IOD) is 

determined using the Image J software.  

Cryostat Sectioning:  Frozen liver sections will be cut and mounted on a chuck using 

Optimum Cutting Temperature (OCT) media. The sections will be allowed to thaw in the 

cryostat to -18°C and then cut. The section will be 8 – 10 microns thick. The unstained 

sections will be collected on to a charged slide and stored at - 80° C till further analysis. 

The sectioned slides will be used to perform all the histology techniques.  

Staining of Cryostat Sections:  

Hematoxylin and Eosin Staining: The frozen section will be cut 8 – 10um thick using a 

cryostat. The frozen sections will be thawed and air dried and stained with progressive 

hematoxylin for 5 – 7 minutes. The slides will then be washed with dH2O six times 

followed by six dips in acid alcohol solution. The slides will then be dipped in Ammonia 

– H2O solution six times and washed in dH2O for 10 minutes. The slides are counterstained 

with eosin to stain for the cytoplasm. Following the eosin staining the slides will be 

progressively dehydrated in alcohol grades and cleared in xylene. The slide will be allowed 
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to dry and mounted using the Permount media. The slides will be observed under a light 

microscope using the appropriate magnification 

Periodic Acid Schiff’s (PAS) Staining: The frozen sections will be air dried and dehydrated 

using Carnoy’s fixative. The fixed sections will be stained with PAS stain for 2hrs. The 

slides will be washed under running tap water and observed under the microscope at 

appropriate magnification. The slides randomized and scored blind on a scale of 1 – 5, with 

one being the lightest stain and 5 being the darkest stain. The histological score will be 

used to estimate glycogen content in the liver.  

Oil Red O Staining:  Frozen cryostat sections will be placed in propylene glycol for 2 

minutes for fixation. The slides will then be stained with Oil Red O stain for 16 hrs. The 

slides will then differentiated in 85% propylene glycol for 1 minute and rinsed with 

distilled water. The slides will then be stained with hematoxylin for 5 minutes and rinsed 

thoroughly with distilled water. The slides will then be mounted in permount and allowed 

to dry. The slides will be observed under a light microscope under appropriate 

magnification. 

Trichrome Staining: Sections will be fixed using Bouins fixative for 1 hr. at 56°C. The 

section will be rinsed under running tap water for 10 minutes till the yellow colour is 

removed. The tissue will then be stained with hematoxylin for 10 minutes and rinsed with 

warm tap water for 10 minutes. The slides will then be washed with distilled water and 

stained with Biebrich Scarlet – acid fuchsin solution for 10 – 15 minutes. The sections will 

then be washed with distilled water and differentiated with phosphomolybdic – 

phosphotungstunic acid solution for 10 – 15 minutes till the collagen stains red. The 
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sections will then be transferred to aniline blue stain for 10 minutes, rinsed with distilled 

water and differentiated in 1% acetic acid solution for 2 – 5 minutes. The slides will then 

be rinsed in distilled water and dehydrated through alcohol grades. Finally the slides will 

be mounted in permount media and allowed to dry. The sections will be observed under an 

appropriate magnification 

Plasma ALT levels in the different group will be measured using ALT liver enzyme kit 

(Pointe Scientific). 5ul of plasma will be diluted to a 1:50 dilution. The ALT enzyme from 

the kit is added to the sample and absorbance is measured at 340nm over 1 minute interval 

for 3 minutes. The rate of NADPH degradation is plotted and the levels of ALT are 

determined from the slope of the degradation rate. 

Glycogen content assay: Glycogen content will also be measured by extraction of glycogen 

from the liver homogenate. Liver tissue will be cut, weighed and stored in 10 ml tubes. 1 

ml of 30% KOH/ Na2SO4 solution will be added to the tissue the tubes will be boiled for 

30 minutes, covered with foil. The tubes will be cooled on ice. 2 ml of 95% EtOH will be 

added to the tubes to precipitated the glycogen out. The sample will be vortexed and stored 

on ice for 30 minutes. The tubes will then be centrifuged at 550g for 30 minutes. The 

supernatant will be discarded and the pellet will be air dried. The dried glycogen pellet will 

then be dissolved in 1 ml of ddH2O till the glycogen is in solution. Glycogen standards will 

be prepared from known concentration of glycogen (0, 25, 50, 75 and 100ug/ml). Add 1 

ml of 5% phenol to each of the samples. Dilute the liver samples to 50ul (25ul) of sample 

+ 950 (975ul) of ddH2O. Quickly add 1ml of 96 – 98 % H2SO4 to the sample/standard 

tubes. Incubate on ice bath for 30 minutes. Blank the spectrophotometer at 490nm using 
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1ml of ddH2O, followed by reading of the standards and the samples. Glycogen content 

can be back calculated by taking into the total liver weight into account. 

Aim 2: To determine if   IL – 6 signaling is necessary or sufficient to alter liver 

metabolic and inflammatory process in the Apc Min/+ model of cancer cachexia  

Rationale: IL – 6 signaling is the major driver for skeletal muscle loss in the Apc Min/+  

and C 26 model of cancer cachexia15, 117. Liver function has been shown to be disrupted in 

the C26 cachexia model by Jones et. al. IL -6 overexpression in different model of infection 

and cancer have been shown to have detrimental effects on liver function leading to 

increased inflammatory responses – NF – kB and APPs – in the liver. IL – 6 overexpression 

is also associated with a STAT3 dependent increase in the levels of TLR 4 and TLR 2 

expression on the skeletal muscle. This increase in TLR 2 and TLR 4 levels is associated 

is skeletal muscle insulin resistance42. IL – 6 is also known to interfere with glucose 

utilization and lipid metabolism in the liver.  IL – 6 thus seem to affect liver function in 

numerous ways, but its role in altering liver function with cachexia progression in the Apc 

Min/+ mice is unexplored. In this Aim we propose to elucidate the role of IL – 6 in altering 

liver function in cachectic Apc Min/+ mice. Inhibition and overexpression studies with IL 

– 6 in the Min mouse will help decipher mechanisms altered by IL – 6 in the liver.  

Experiment 2.1 will use administration of two different IL – 6 inhibitors on liver 

function in cachectic ApcMin/+ mice. IL – 6 inhibition in this aim will be brought about by 

administration of an anti – body against the trans IL – 6 signaling. Soluble IL – 6 receptor 

in the blood can buffer IL – 6 signaling, by binding to free IL – 6 molecules in the blood. 

Binding of the soluble receptor to the soluble receptor antibody often triggers immune cells 

in the blood eliciting and inflammatory response, but activation of the classical response 
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leads to leads to more anti – inflammatory responses like secretion of acute phase proteins 

from the liver37. It would thus be interesting to examine if inhibition of trans IL – 6 

signaling alters liver function.   

Since inhibition of IL – 6 by its antibody is only partial, the second part of this sub 

– Aim will study the effect of Pyrrolidine dithiocarbamate (PDTC) and systemic STAT3 

and NF – kB inhibitor on liver function in cachectic Apc Min/+ mice.  

Experimental Design for specific Aim 2:  

Aim 2.1:  This study will administer the IL – 6 trans signaling inhibitor 

(gp130fusion protein) and PDTC to severely cachectic Apc Min/+ mice. Chronic IL – 6 

signalling levels will define chronic inflammation in this Aim, whereas Liver function 

parameters would remain the same as Aim 1.  

Animals: All the animals required for this experiment will be housed in Animal 

Resource Facility, at the University of South Carolina. The animals will be divided into 

two different groups C57BL/6 and Apc Min/+ mice. The mice will be allowed to age to 16 

– 18 weeks till they are severely cachectic and start losing body weight. The mice will be 

housed in standard caging and would be allowed an ad libitum access to food and water. 

The animals were maintained at a 12:12 light and dark cycle. The mice will be monitored 

for body weight from 12 weeks of age onwards.  At the initiation of body weight loss,  IL 

– 6 inhibitor – gp130fusion protein and PDTC – will be administered to the appropriate 

groups The gp130 fusion protein will inhibit the IL – 6 trans signaling and will be 

administered intraperitonially at a dose of 150ug/mouse once every week for two weeks. 

The PDTC on the other had has a shorter half-life and will be administered i.p. at a dose of 
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100ug/ml/ gram of body weight daily for two weeks.  The control Min and WT group will 

be administered sterile PBS as a placebo in place of the drug.  Based on the IL – 6 receptor 

antibody study, 6 mice group would suffice to show statistical significance (p = 0.05) with 

administration of PDTC and gp130 fusion protein administration 

Table C.4: Animal treatment groups of the gp130 fusion protein experiment 

Genotype Treatment Age N 

C57BL/6 PBS 16 – 18 weeks 6 

C57BL/6 Gp130 fusion 

protein 

16 – 18 weeks 6 

Apc Min/+ PBS 16 – 18 weeks 6 

Apc Min/+ Gp130 fusion 

protein 

16 – 18 weeks 6 

 

Table C.5: Animal treatment groups of the PDTC experiment 

Genotype Treatment Age N 

C57BL/6 PBS 16 – 18 weeks 6 

C57BL/6 PDTC 16 – 18 weeks 6 

Apc Min/+ PBS 16 – 18 weeks 6 

Apc Min/+ PDTC 16 – 18 weeks 6 

 

Since both the studies utilize 16 – 18 week control mice treated with PBS the same 

control group will be used for both the studies.  
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Primary Outcomes:  

Inflammatory markers:  Since IL – 6 is the primary driver of the inflammatory phenotype 

seen in the Apc Min/+ mice, activation of the IL – 6 signaling cascade will be confirmed. 

Activation of STAT – 3 via phosphorylation, activation of SOCS 3 would be measured via 

Western blot. If protein analysis proves to be inconclusive in mRNA levels for STAT-3, 

SOCS – 3 and the IL – 6 receptor gp130 would be measured.  The liver responds to an 

inflammatory stimulus by triggering the acute phase protein (APP) secretion. The levels of 

APPs like haptaglobin, fibrinogen and SAA would be measured at the mRNA and protein 

level in the liver homogenates of the Apc Min/+ mice and compared with age matched WT 

controls. For the IL – 6 independent mechanisms, spleen size between the different groups 

will be compared as a measure of immune cell proliferation. TLR 4 downstream cascade 

activating NF – κB will be estimated in terms of both protein and mRNA quantification in 

liver homogenates.  

Protein Synthesis/Degradation markers:  Infection or tumors are known to upregulate 

protein synthesis in the liver partially for the synthesis of APP, gluconeogenesis via the 

Cori’s cycle and due to the systemic hypermetabolic state. But proinflammatory cytokine 

secretion is also known to increase MMP levels in the liver. The mTOR cascade will be 

probed for to estimate rate of protein synthesis, with p – mTOR and its downstream targets 

4EBP-1 and ribosomal S6 kinase being measured using Western blot and quantitative PCR. 

Protein degradation rate in the liver will be measured using matrix metalloproteinase 2 

(MMP – 2).  

Liver morphology analysis:  Liver morphology will be observed by hematoxylin and Eosin 

(H&E) staining. The C57BL/6 sections will be compared to severely cachectic Apc Min/+ 
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mice tissue. Min liver morphology will be compared for the non – cachectic, pre – cachectic 

and severely cachectic mice. The stained sections will be compared for morphological 

changes in liver anatomy with cachexia progression. Liver sections of C57BL/6 mice 

would be used as controls.  

Liver glycogen content:  Liver glycogen content allows us to study if any energy reserves 

are preserved in the cachectic liver or do glycogen stores deplete with cachexia 

progression. Glycogen levels in the liver will be studied in by staining the cryostat sections 

with Periodic Acid Schiff’s (PAS) stain. A quantitative assay on liver glycogen content 

will be done using a colorimetric assay for glycogen measurement.  

Liver lipid content:  Liver lipid content will be measured using Oil Red O staining. 

Increased levels of pro inflammatory cytokines are known to increase lipolysis. The 

excessive fat can be broken down in the liver for energy. The Min model is hypermetabolic 

and comparing fat deposition in the liver from the non – cachectic to severely cachectic 

state will allow us to examine liver function with respect to fatty acid metabolism.  

Liver injury makers: 1) Presence of fibrotic tissue in the liver will be measured using 

trichrome staining. Liver injury is commonly observed under chronic inflammatory 

conditions, but if fibrosis occurs in the liver with cachexia is not known. 

Liver injury makers: 2) Alanine aminoacyltranferase (ALT) measurement:  Plasma ALT 

levels are a marker for liver injury. The enzyme is usually located in liver parenchymal 

cells and allows the body to metabolize protein or more specifically alanine to glucose. Its 

presence in blood signifies liver injury. 
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Albumin content in liver and plasma: Liver synthesizes the protein albumin under normal 

healthy condition. During prolonged infections and cancer the production of albumin via 

the liver decreases. Albumin production is thus a marker for liver function and will be 

measured using Western blot and quantitative PCR. Since albumin is synthesized in the 

liver but is secreted in the blood, albumin protein levels will be analyzed by western 

blotting in plasma samples. 

Specific Methodology Aim #2:  

Genotyping: Litters born in a breeding cage will be weaned at 3 – 4 weeks of age and 

separated depending based on sex. Refer to Aim 1 – Genotyping for detailed protocol. 

Administration of the gp130 fusion protein: Mice will be aged to 16 – 18 week of age. 

Body for these mice will be monitored every week. Administration of the fusion protein 

would be initiated after the mice show an initial body weight loss. 150ug/ mouse of the 

fusion protein will be administered once a week for two weeks.  

Administration of PDTC:  Mice will be aged to 16 – 18 week of age. Body for these mice 

will be monitored every week. Administration of PDTC would be initiated after the mice 

show an initial body weight loss. 100 µg/ml of PDTC will be administered once an 

everyday for a period of two weeks.  

Plasma collection: The mice will be anesthetized using either isoflurane or ketamine 

cocktail. Using a chelated glass capillary tube, blood will be collected via retro – orbital 

puncture. The collected blood will be stored in an eppendorf on ice. The blood will then be 

spun at 4°C for 10 minutes at 10,000 rpm. The supernatant plasma is transferred to a fresh 

eppendorf tube and stored at - 80°C till further use. 
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Tissue collection: Mice will be given a subcutaneous injection of ketamine (90mg/kg BW) 

– xylazine (7 mg/kg BW) – acepromazine (1mg/kg BW). Muscle collection will be started 

as soon as the mouse stops responding to toe/tail pinch. Skeletal muscle visceral organs 

like the liver will be collected cleaned with sterile PBS, dried, weighed and snap frozen in 

liquid nitrogen. Tibia length is measured with calipers to estimate body size. Refer to Aim 

1 for detailed protocol. 

Plasma IL – 6 levels: Plasma IL – 6 levels will be measured using the BD biosciences IL 

– 6 ELISA kit for mice. Refer to Aim 1 for detailed protocol. 

Plasma Endotoxin levels: Plasma endotoxin levels will be determined using the Hycult 

Limulus Ambeocyte lysate (LAL) assay kit. . Refer to Aim 1 for detailed protocol. 

RNA isolation: RNA extraction will be done using Trizol, chloroform, ethanol method. 

Refer to Aim 1 for detailed protocol.   

cDNA preparation: Isolated RNA will be converted to cDNA using the TaqMan cDNA 

synthesis kit. . Refer to Aim 1 for detailed protocol. 

Real time PCR: Once the quality of cDNA is determined to be good, the cDNA is amplified 

using the primers of interest and SyBr Green. The GAPDH gene is used an internal control/ 

housekeeping gene and the gene of interest is compared against it. The Δct method is used 

to calculate differences in gene expression between groups with respect to GAPDH. . Refer 

to Aim 1 for detailed protocol. 

Protein Extraction:  Protein extraction is done by homogenization in Muller buffer and 

estimation of protein by Bradford Reagent. . Refer to Aim 1 for detailed protocol. 
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Western Blot: Protein extract are run on SDS – PAGE gel and transferred on to PVDF 

membrane overnight. Once transferred the Ponceau staining will be done to determine the 

uniform transfer onto the membrane. The membrane will then be probed with primary 

antibody, washed with TBST 3 times and incubated with an HRP tagged secondary 

antibody. Chemiluminescent agent will be used to estimate the HRP bound to the 

membrane. The chemiluminscence is quantified by autoradiography techniques. The 

developed blot is scanned onto a computer and integrated optical density (IOD) is 

determined using the Image J software.  

Cryostat Sectioning:  Frozen liver sections will be cut and mounted on a chuck using 

Optimum Cutting Temperature (OCT) media. The sections will be allowed to thaw in the 

cryostat to -18°C and then cut. The section will be 8 – 10 microns thick. The unstained 

sections will be collected on to a charged slide and stored at - 80° C till further analysis. 

The sectioned slides will be used to perform all the histology techniques. The slides were 

stained for H&E, PAS, Oil RedO and Trichrome stains. . Refer to Aim 1 for detailed 

protocol. 

Plasma ALT levels in the different group will be measured using ALT liver enzyme kit 

(Pointe Scientific). 5ul of plasma will be diluted to a 1:50 dilution. The ALT enzyme from 

the kit is added to the sample and absorbance is measured at 340nm over 1 minute interval 

for 3 minutes. The rate of NADPH degradation is plotted and the levels of ALT are 

determined from the slope of the degradation rate. 

Glycogen content assay: Glycogen content assay: Glycogen content will also be measured 

by extraction of glycogen from the liver homogenate. Glycogen will be extracted using 
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KOH/ Na2SO4 solution followed by EtOH precipitation. Extracted glycogen will be 

compared to the glycogen standard curve to estimate total glycogen content in the liver. 

Refer to Aim 1 for detailed protocol.  

Aim 3: To determine if antibiotic mediated immune suppression affects liver function 

in the cachectic Apc Min/+ mice model  

Rationale:  The ApcMin/+ model of cancer cachexia characterized by loss of muscle mass, 

fat mass, splenomegaly, increased level of pro inflammatory cytokines like IL – 6, MCP -

1, increased gut permeability, increased levels of plasma endotoxin levels, swelling of 

mesenteric lymph nodes. Though IL – 6 is the primary driver for cachexia in the Apc Min/+ 

mice, factors other than IL – 6 are also involved in cachexia progression. Gut permeability 

is known to be affected in the ApcMin/+ mice16. Changes in gut permeability correspond 

to increased plasma endotoxin levels. Increased level of LPS in the blood can lead to the 

secretion of IL -6, MCP -1 and other pro – inflammatory cytokines. Pro – inflammatory 

conditions triggered by the tumor also allow of proliferation of the immune system leading 

to splenomegaly. Gut microbiota diversity and composition are known to change with 

colorectal cancer134. An altered gut flora can elicit an immune response further 

supplementing chronic inflammation. The liver receives the endotoxin contaminated blood 

via the portal vein. Thus the effect of altered gut microbiota or increased LPS could 

exacerbate localized inflammatory responses in the liver. Preliminary data shows that 

antibiotic treatment attenuated splenomegaly. In Aim 3 of this study we will study will 

employ antibiotics to suppress systemic endotoxin levels by elimination of systemic 

microbiota. Antibiotics will be administered to non – cachectic mice, suppressing immune 

response and systemic inflammation in the Apc Min/+ mice. The mice will be monitored 
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for the next seven weeks and sacrificed at 20 weeks of age. Since the liver filters blood 

from the portal vein and the hepatic artery, antibiotic treatment would protect the liver from 

endotoxin exposure protecting it from a chronic inflammatory response. We hypothesize 

that antibiotic suppression of systemic inflammation would attenuate liver function in 

ApcMin/+ mice.   

Experimental Design for Specific Aim 3: 

Aim 3.1: To determine if polymyxin treatment attenuates chronic inflammation to attenuate 

liver function during cancer cachexia 

Experiment 3.1 Animals will be treated with 1mg/ml dose of the antibiotic Polymyxin. 

Polymyxin B specifically binds to the lipid A component of bacteria leading to disruption 

of the cell wall of Gram negative bacteria. Polymyxin treatment does not affect the Gram 

positive population in the gut. Preliminary data shows an attenuation of spleen size with 

Polymyxin treatment, indicating a suppressed immune response.  We hypothesize that 

Polymyxin treatment would suppress serum endotoxin levels and immune cell 

proliferation, attenuating liver function in severely cachectic ApcMin/+ mice.  

Aim 3.2: To determine if Norflaxacin/Ampicillin treatment attenuates chronic 

inflammation to attenuate liver function during cancer cachexia 

Experiment 3.2: Animals will be treated with 1mg/ml dose of Ampicillin – Norflaxacin 

(Nor/Amp) cocktail. The Nor/Amp cocktail targets both the gram positive and gram 

negative bacteria, allowing a greater suppression of systemic microbes. Norfloxacin act by 

inhibiting DNA gyrase necessary for bacterial replication, while Ampicillin inhibits 

bacterial cell wall synthesis. Inhibition via Nor/Amp would allow for complete elimination 

of both gram positive and gram negative microbes allowing for a greater suppression of 
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systemic inflammation. Preliminary data shows a greater attenuation of splenomegaly with 

Nor/Amp treatment as compared to Polymyxin treatment. Suppression of systemic immune 

response could attenuate inflammation induced liver dysfunction during cachexia in the 

ApcMin/+ mice. We hypothesize that Nor/Amp treatment would suppress systemic endotoxin 

levels and immune cell proliferation, attenuating liver function in severely cachectic 

ApcMin/+ mice.  

Table C.6: Experimental animals used the antibiotic treatment 

Genotype Treatment 

Age at 

initiation 

Age at 

sacrifice 

# of animals per 

group 

C57BL/6 dH2O 13 weeks 20 weeks 10 

Apc Min/+ 

dH2O 13 weeks 20 weeks 10 

Polymyxin 13 weeks 20 weeks 10 

Nor/Amp 13 weeks 20 weeks 10 

 

Primary Outcomes:  

Inflammatory markers:  Since IL – 6 is the primary driver of the inflammatory phenotype 

seen in the Apc Min/+ mice, activation of the IL – 6 signalling cascade will be confirmed. 

Activation of STAT – 3 via phosphorylation, activation of SOCS 3 would be measured via 

Western blot. If protein analysis proves to be inconclusive in mRNA levels for STAT-3, 

SOCS – 3 and the IL – 6 receptor gp130 would be measured.  The liver responds to 

inflammatory stimuli by triggering the acute phase protein (APP) secretion. The levels of 

APPs like haptaglobin, fibrinogen and SAA would be measured at the mRNA and protein 
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level in the liver homogenates of the Apc Min/+ mice and compared with age matched WT 

controls. For the IL – 6 independent mechanisms, spleen size between the different groups 

will be compared as a measure of immune cell proliferation. TLR 4 downstream cascade 

activating NF – κB will be estimated in terms of both protein and mRNA quantification in 

liver homogenates. Plasma endotoxin levels will be measured with antibiotic treatment.  

Protein Synthesis/Degradation markers:  Infection or tumors are known to upregulate 

protein synthesis in the liver partially for the synthesis of APP, gluconeogenesis via the 

Cori’s cycle and due to the systemic hypermetabolic state. But proinflammatory cytokine 

secretion is also known to increase MMP levels in the liver. The mTOR cascade will be 

probed for to estimate rate of protein synthesis, with p – mTOR and its downstream targets 

4EBP-1 and ribosomal S6 kinase being measured using Western blot and quantitative PCR. 

Protein degradation rate in the liver will be measured using matrix metalloproteinase 2 

(MMP – 2).  

Liver morphology analysis:  Liver morphology will be observed by hematoxylin and Eosin 

(H&E) staining. The C57BL/6 sections will be compared to severely cachectic Apc Min/+ 

mice tissue. Min liver morphology will be compared for the non – cachectic, pre – cachectic 

and severely cachectic mice. The stained sections will be compared for morphological 

changes in liver anatomy with cachexia progression. Liver sections of C57BL/6 mice 

would be used as controls.  

Liver glycogen content:  Liver glycogen content allows us to study if any energy reserves 

are preserved in the cachectic liver or do glycogen stores deplete with cachexia 

progression. Glycogen levels in the liver will be studied in by staining the cryostat sections 
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with Periodic Acid Schiff’s (PAS) stain. A quantitative assay on liver glycogen content 

will be done using a colorimetric assay for glycogen measurement.  

Liver lipid content:  Liver lipid content will be measured using Oil Red O staining. 

Increased levels of pro inflammatory cytokines are known to increase lipolysis. The 

excessive fat can be broken down in the liver for energy. The Min model is hypermetabolic 

and comparing fat deposition in the liver from the non – cachectic to severely cachectic 

state will allow us to examine liver function with respect to fatty acid metabolism.  

Liver injury makers: 1) Presence of fibrotic tissue in the liver will be measured using 

trichrome staining. Liver injury is commonly observed under chronic inflammatory 

conditions, but if fibrosis occurs in the liver with cachexia is not known. 

Liver injury makers: 2) Alanine aminoacyltranferase (ALT) measurement:  Plasma ALT 

levels are a marker for liver injury. The enzyme is usually located in liver parenchymal 

cells and allows the body to metabolize protein or more specifically alanine to glucose. Its 

presence in blood signifies liver injury. 

Albumin content in liver and plasma: Liver synthesizes the protein albumin under normal 

healthy condition. During prolonged infections and cancer the production of albumin via 

the liver decreases. Albumin production is thus a marker for liver function and will be 

measured using Western blot and quantitative PCR. Since albumin is synthesized in the 

liver but is secreted in the blood, albumin protein levels will be analyzed by western 

blotting in plasma samples. 
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Specific Methodology Aim #1:  

Genotyping: Litters born in a breeding cage will be weaned at 3 – 4 weeks of age and 

separated depending based on sex. Refer to Aim 1 – Genotyping for detailed protocol. 

Administration of antibiotics: Antibiotics were added to drinking water at a concentration 

of 1mg/ml. Polymyxin B, Norfloxacin and Ampicillin were purchased from Sigma, 

weighed and dissolved in 100mls of water each. The Nor/Amp cocktail was mixed in equal 

amounts. The treatment with antibiotics started at 13 weeks of age and was continued till 

sacrifice of the animal.  

Plasma collection: The mice will be anesthetized using either isoflurane or ketamine 

cocktail. Using a chelated glass capillary tube, blood will be collected via retro – orbital 

puncture. The collected blood will be stored in an eppendorf on ice. The blood will then be 

spun at 4°C for 10 minutes at 10,000 rpm. The supernatant plasma is transferred to a fresh 

eppendorf tube and stored at - 80°C till further use. 

Tissue collection: Mice will be given a subcutaneous injection of ketamine (90mg/kg BW) 

– xylazine (7 mg/kg BW) – acepromazine (1mg/kg BW). Muscle collection will be started 

as soon as the mouse stops responding to toe/tail pinch. Skeletal muscle Viseral organs like 

the liver will be collected cleaned with sterile PBS, dried, weighed and snap frozen in liquid 

nitrogen. Tibia length is measured with calipers to estimate body size. Refer to Aim 1 for 

detailed protocol. 

Plasma IL – 6 levels: Plasma IL – 6 levels will be measured using the BD biosciences IL 

– 6 ELISA kit for mice. Refer to Aim 1 for detailed protocol. 
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Plasma Endotoxin levels: Plasma endotoxin levels will be determined using the Hycult 

Limulus Ambeocyte lysate (LAL) assay kit. . Refer to Aim 1 for detailed protocol. 

RNA isolation. RNA extraction will be done using Trizol, chloroform, ethanol method. 

Refer to Aim 1 for detailed protocol.   

cDNA preparation: Isolated RNA will be converted to cDNA using the TaqMan cDNA 

synthesis kit. . Refer to Aim 1 for detailed protocol. 

Real time PCR: Once the quality of cDNA is determined to be good, the cDNA is amplified 

using the primers of interest and SyBr Green. The GAPDH gene is used an internal control/ 

housekeeping gene and the gene of interest is compared against it. The Δct method is used 

to calculate differences in gene expression between groups with respect to GAPDH. . Refer 

to Aim 1 for detailed protocol. 

Protein Extraction:  Protein extraction is done by homogenization in Muller buffer and 

estimation of protein by Bradford Reagent. . Refer to Aim 1 for detailed protocol. 

Western Blot: Protein extract are run on SDS – PAGE gel and transferred on to PVDF 

membrane overnight. Once transferred the Ponceau staining will be done to determine the 

uniform transfer onto the membrane. The membrane will then be probed with primary 

antibody, washed with TBST 3 times and incubated with an HRP tagged secondary 

antibody. Chemiluminescent agent will be used to estimate the HRP bound to the 

membrane. The chemiluminscence is quantified by autoradiography techniques. The 

developed blot is scanned onto a computer and integrated optical density (IOD) is 

determined using the Image J software.  
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Cryostat Sectioning:  Frozen liver sections will be cut and mounted on a chuck using 

Optimum Cutting Temperature (OCT) media. The sections will be allowed to thaw in the 

cryostat to -18°C and then cut. The section will be 8 – 10 microns thick. The unstained 

sections will be collected on to a charged slide and stored at - 80° C till further analysis. 

The sectioned slides will be used to perform all the histology techniques. The slides were 

stained for H&E, PAS, Oil RedO and Trichrome stains. . Refer to Aim 1 for detailed 

protocol. 

Plasma ALT levels in the different group will be measured using ALT liver enzyme kit 

(Pointe Scientific). 5ul of plasma will be diluted to a 1:50 dilution. The ALT enzyme from 

the kit is added to the sample and absorbance is measured at 340nm over 1 minute interval 

for 3 minutes. The rate of NADPH degradation is plotted and the levels of ALT are 

determined from the slope of the degradation rate. 

Glycogen content assay: Glycogen content will also be measured by extraction of glycogen 

from the liver homogenate. Glycogen will be extracted using KOH/ Na2SO4 solution 

followed by EtOH precipitation. Extracted glycogen will be compared to the glycogen 

standard curve to estimate total glycogen content in the liver. Refer to Aim 1 for detailed 

protocol.
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APPENDIX D 

RAW DATA 
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Table D.1: Spectrophotometer reading for the timecourse samples in Aim 1

 

Sample ID 	User ID 	Date  	Time  	ng/ul  	A260  	A280  	260/280  	260/230  	Constant  	Cursor Pos. 	Cursor abs. 	340 raw

586s 	Default 	9/17/2013 	8:42 PM 	502.99 	12.575 	6.920 	1.82 	2.37 	40.00 	230 	5.308 	0.355

732s 	Default 	9/17/2013 	8:46 PM 	191.66 	4.791 	2.816 	1.70 	2.47 	40.00 	230 	1.936 	-0.001

562s 	Default 	9/17/2013 	8:48 PM 	544.94 	13.624 	7.486 	1.82 	2.35 	40.00 	230 	5.796 	0.016

416s 	Default 	9/17/2013 	8:50 PM 	560.91 	14.023 	7.883 	1.78 	2.35 	40.00 	230 	5.979 	0.044

1177s 	Default 	9/17/2013 	8:53 PM 	467.36 	11.684 	6.484 	1.80 	2.35 	40.00 	230 	4.970 	0.058

803s 	Default 	9/17/2013 	8:54 PM 	483.13 	12.078 	7.230 	1.67 	2.34 	40.00 	230 	5.165 	0.013

1102s 	Default 	9/17/2013 	8:57 PM 	350.57 	8.764 	5.252 	1.67 	2.03 	40.00 	230 	4.324 	35.851

1155s 	Default 	9/17/2013 	9:00 PM 	486.89 	12.172 	6.876 	1.77 	2.16 	40.00 	230 	5.638 	15.027

537s 	Default 	9/17/2013 	9:01 PM 	468.51 	11.713 	6.869 	1.71 	2.29 	40.00 	230 	5.107 	0.044

608s 	Default 	9/17/2013 	9:03 PM 	171.81 	4.295 	3.515 	1.22 	0.96 	40.00 	230 	4.465 	30.555

682s 	Default 	9/17/2013 	9:05 PM 	252.63 	6.316 	3.953 	1.60 	2.06 	40.00 	230 	3.066 	39.689

439s 	Default 	9/17/2013 	9:08 PM 	494.57 	12.364 	6.854 	1.80 	2.34 	40.00 	230 	5.291 	0.058

463s 	Default 	9/17/2013 	9:10 PM 	433.80 	10.845 	6.288 	1.72 	2.16 	40.00 	230 	5.012 	0.020

487 	Default 	9/17/2013 	9:12 PM 	451.15 	11.279 	6.364 	1.77 	2.31 	40.00 	230 	4.890 	0.054

1080s 	Default 	9/17/2013 	9:14 PM 	569.70 	14.242 	7.724 	1.84 	2.13 	40.00 	230 	6.690 	0.241

633s 	Default 	9/17/2013 	9:17 PM 	453.06 	11.326 	6.459 	1.75 	2.34 	40.00 	230 	4.835 	0.692

752s 	Default 	9/17/2013 	9:19 PM 	805.26 	20.132 	11.090 	1.82 	2.38 	40.00 	230 	8.466 	0.053

775s 	Default 	9/17/2013 	9:21 PM 	641.93 	16.048 	8.777 	1.83 	2.36 	40.00 	230 	6.798 	0.039

1177b 	Default 	9/17/2013 	9:23 PM 	573.37 	14.334 	6.873 	2.09 	2.04 	40.00 	230 	7.025 	0.044

1177b1 	Default 	9/17/2013 	9:24 PM 	578.69 	14.467 	6.882 	2.10 	1.88 	40.00 	230 	7.704 	0.067

752b 	Default 	9/17/2013 	9:26 PM 	438.96 	10.974 	5.573 	1.97 	2.08 	40.00 	230 	5.272 	0.040

775b 	Default 	9/17/2013 	9:27 PM 	592.32 	14.808 	7.288 	2.03 	2.06 	40.00 	230 	7.199 	0.033

1155b 	Default 	9/17/2013 	9:28 PM 	494.37 	12.359 	5.972 	2.07 	1.97 	40.00 	230 	6.290 	0.230

732b 	Default 	9/17/2013 	9:31 PM 	448.53 	11.213 	5.649 	1.98 	2.07 	40.00 	230 	5.413 	0.088

487b 	Default 	9/17/2013 	9:32 PM 	475.23 	11.881 	6.005 	1.98 	1.34 	40.00 	230 	8.883 	0.108

608b 	Default 	9/17/2013 	9:36 PM 	473.39 	11.835 	5.989 	1.98 	1.85 	40.00 	230 	6.391 	0.455

416b 	Default 	9/17/2013 	9:40 PM 	485.45 	12.136 	6.109 	1.99 	1.96 	40.00 	230 	6.179 	0.129

1080b 	Default 	9/17/2013 	9:43 PM 	467.93 	11.698 	5.727 	2.04 	1.26 	40.00 	230 	9.282 	0.271

1203b 	Default 	9/17/2013 	9:44 PM 	542.49 	13.562 	6.521 	2.08 	2.09 	40.00 	230 	6.489 	0.027

439b 	Default 	9/17/2013 	9:47 PM 	492.64 	12.316 	5.939 	2.07 	1.93 	40.00 	230 	6.375 	0.068

775b 	Default 	9/17/2013 	9:49 PM 	257.04 	6.426 	3.529 	1.82 	2.41 	40.00 	230 	2.669 	0.006

1954 	Default 	9/17/2013 	9:54 PM 	1567.26 	39.182 	19.698 	1.99 	2.21 	40.00 	230 	17.745 	-0.042

1855 	Default 	9/17/2013 	9:58 PM 	2188.18 	54.704 	27.930 	1.96 	2.05 	40.00 	230 	26.690 	5.535

1998 	Default 	9/17/2013 	10:00 PM 	1880.46 	47.011 	23.414 	2.01 	1.78 	40.00 	230 	26.432 	0.058

1927 	Default 	9/17/2013 	10:03 PM 	1852.46 	46.312 	23.103 	2.00 	2.13 	40.00 	230 	21.714 	0.128

1976 	Default 	9/17/2013 	10:04 PM 	2648.19 	66.205 	33.123 	2.00 	2.07 	40.00 	230 	31.936 	0.057

2075 	Default 	9/17/2013 	10:06 PM 	1579.68 	39.492 	19.764 	2.00 	2.01 	40.00 	230 	19.685 	0.194

2051 	Default 	9/17/2013 	10:07 PM 	1412.51 	35.313 	17.729 	1.99 	1.98 	40.00 	230 	17.822 	0.255

2026 	Default 	9/17/2013 	10:09 PM 	2103.33 	52.583 	26.458 	1.99 	2.02 	40.00 	230 	26.062 	0.398

2099 	Default 	9/17/2013 	10:10 PM 	2335.47 	58.387 	29.401 	1.99 	2.08 	40.00 	230 	28.103 	0.270

2142 	Default 	9/17/2013 	10:12 PM 	1238.12 	30.953 	15.546 	1.99 	2.11 	40.00 	230 	14.660 	-0.010

2502 	Default 	9/17/2013 	10:14 PM 	2047.84 	51.196 	26.200 	1.95 	1.85 	40.00 	230 	27.742 	7.091

2477 	Default 	9/17/2013 	10:15 PM 	849.73 	21.243 	10.935 	1.94 	1.31 	40.00 	230 	16.209 	0.030

2535 	Default 	9/17/2013 	10:17 PM 	1500.66 	37.516 	18.750 	2.00 	2.08 	40.00 	230 	18.053 	0.178

2552 	Default 	9/17/2013 	10:18 PM 	793.14 	19.828 	10.166 	1.95 	2.00 	40.00 	230 	9.907 	0.151

2680 	Default 	9/17/2013 	10:20 PM 	1628.36 	40.709 	20.501 	1.99 	1.95 	40.00 	230 	20.910 	0.701

2833 	Default 	9/17/2013 	10:21 PM 	1909.28 	47.732 	23.876 	2.00 	2.07 	40.00 	230 	23.038 	0.024

2810 	Default 	9/17/2013 	10:23 PM 	2346.97 	58.674 	29.559 	1.98 	1.63 	40.00 	230 	35.949 	0.089

2859 	Default 	9/17/2013 	10:25 PM 	2258.75 	56.469 	28.422 	1.99 	2.03 	40.00 	230 	27.780 	0.285

2700 	Default 	9/17/2013 	10:26 PM 	1608.67 	40.217 	20.257 	1.99 	1.65 	40.00 	230 	24.341 	0.808

2651 	Default 	9/17/2013 	10:28 PM 	1858.45 	46.461 	23.462 	1.98 	1.91 	40.00 	230 	24.334 	0.558

2790 	Default 	9/17/2013 	10:29 PM 	1910.12 	47.753 	23.972 	1.99 	2.11 	40.00 	230 	22.596 	0.246

2524 	Default 	9/17/2013 	10:31 PM 	1833.49 	45.837 	22.947 	2.00 	2.03 	40.00 	230 	22.552 	0.522

2580 	Default 	9/17/2013 	10:33 PM 	1126.79 	28.170 	14.170 	1.99 	1.88 	40.00 	230 	14.965 	0.473

2725 	Default 	9/17/2013 	10:34 PM 	1296.40 	32.410 	16.261 	1.99 	1.73 	40.00 	230 	18.770 	0.730

2751 	Default 	9/17/2013 	10:36 PM 	1309.98 	32.750 	16.335 	2.00 	1.94 	40.00 	230 	16.888 	0.539
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Table D.2: Spectrophotometer reading for 400ng dilution and cDNA synthesis 

dilutions for the time course samples in Aim 1 

 

Sample ID  	ng/ul  	A260  	A280  	260/280  	260/230 RNA dil to 400 water Cal. Conc Acutal spec conc RNA H2O Geno Age

2681 1628.3 	40.709 	20.501 	1.99 	1.95 12.283 37.717 400 426.39 2.35 7.65 B6 12

2700 1608.6 	40.217 	20.257 	1.99 	1.65 12.433 37.567 400 443.06 2.26 7.74 B6 12

2651 1858.4 	46.461 	23.462 	1.98 	1.91 10.762 39.238 400 431.12 2.32 7.68 B6 12

2725 1296.4 	32.410 	16.261 	1.99 	1.73 15.427 34.573 400 464.06 2.15 7.85 B6 12

2751 1309.9 	32.750 	16.335 	2.00 	1.94 15.268 34.732 400 443.89 2.25 7.75 B6 12

2502 2047.8 	51.196 	26.200 	1.95 	1.85 9.767 40.233 400 476.54 2.10 7.90 Min 12

2477 849.7 	21.243 	10.935 	1.94 	1.31 23.538 26.462 400 391.6 2.55 7.45 Min 12

2535 1500.6 	37.516 	18.750 	2.00 	2.08 13.328 36.672 400 428.64 2.33 7.67 Min 12

2552 793.1 	19.828 	10.166 	1.95 	2.00 25.218 24.782 400 424.79 2.35 7.65 Min 12

2833 1909.28 	47.732 	23.876 	2.00 	2.07 10.475 39.525 400 460.3 2.17 7.83 Min 12

2810 2346.9 	58.674 	29.559 	1.98 	1.63 8.522 41.478 400 469.22 2.13 7.87 Min 12

2859 2258.7 	56.469 	28.422 	1.99 	2.03 8.855 41.145 400 447.88 2.23 7.77 Min 12

2790 1910.1 	47.753 	23.972 	1.99 	2.11 10.471 39.529 400 474.25 2.11 7.89 Min 12

2524 1833.4 	45.837 	22.947 	2.00 	2.03 10.909 39.091 400 475.66 2.10 7.90 Min 12

2580 1126.7 	28.170 	14.170 	1.99 	1.88 17.751 32.249 400 470.65 2.12 7.88 Min 12

1855 2188.18 	54.704 	27.930 	1.96 	2.05 9.140 40.860 400 475.39 2.10 7.90 B6 14

2051 1412.5 	35.313 	17.729 	1.99 	1.98 14.159 35.841 400 437.73 2.28 7.72 B6 14

2026 2103.33 	52.583 	26.458 	1.99 	2.02 9.509 40.491 400 465.97 2.15 7.85 B6 14

1954 1567.26 	39.182 	19.698 	1.99 	2.21 12.761 37.239 400 432.14 2.31 7.69 Min 14

1998 1880.46 	47.011 	23.414 	2.01 	1.78 10.636 39.364 400 422.86 2.36 7.64 Min 14

1927 1852.46 	46.312 	23.103 	2.00 	2.13 10.796 39.204 400 463.81 2.16 7.84 Min 14

1976 2648.19 	66.205 	33.123 	2.00 	2.07 7.552 42.448 400 507.92 1.97 8.03 min 14

2075 1579.68 	39.492 	19.764 	2.00 	2.01 12.661 37.339 400 454.51 2.20 7.80 Min 14

2099 2335.40 	58.387 	29.401 	1.99 	2.08 8.564 41.436 400 486.71 2.05 7.95 Min 14

2142 1238.1 	30.953 	15.546 	1.99 	2.11 16.154 33.846 400 405.34 2.47 7.53 Min 14

Sample ID  	ng/ul  	A260  	A280  	260/280  	260/230 RNA dil to 400 water Cal. Conc Acutal spec conc RNA H2O Geno Age

1102s 350.47 	8.764 	5.252 	1.67 	2.03 57.066 -7.066 400 350.47 2.85 7.15 B6 20

682s 252.63 	6.316 	3.953 	1.60 	2.06 79.167 -29.167 400 252.63 3.96 6.04 b6 20

463s 433.8 	10.845 	6.288 	1.72 	2.16 46.104 3.896 400 433.8 2.31 7.69 B6 20

1177b 573.37 	14.334 	6.873 	2.09 	2.04 34.881 15.119 400 573.37 1.74 8.26 B6 20

1155b 494.37 	12.359 	5.972 	2.07 	1.97 40.456 9.544 400 494.37 2.02 7.98 B6 20

608b 473.39 	11.835 	5.989 	1.98 	1.85 42.248 7.752 400 473.39 2.11 7.89 b6 20

416 485.45 	12.136 	6.109 	1.99 	1.96 41.199 8.801 400 485.45 2.06 7.94 b6 20

1080b 467.93 	11.698 	5.727 	2.04 	1.26 42.741 7.259 400 467.93 2.14 7.86 b6 20

1203b 542.49 	13.562 	6.521 	2.08 	2.09 36.867 13.133 400 542.49 1.84 8.16 b6 20

586s 502.99 	12.575 	6.920 	1.82 	2.37 39.762 10.238 400 502.99 1.99 8.01 Min 20

562s 544.94 	13.624 	7.486 	1.82 	2.35 36.701 13.299 400 544.94 1.84 8.16 Min 20

803 483.13 	12.078 	7.230 	1.67 	2.34 41.397 8.603 400 483.13 2.07 7.93 Min 20

537 468.51 	11.713 	6.869 	1.71 	2.29 42.689 7.311 400 468.51 2.13 7.87 Min 20

633 453.06 	11.326 	6.459 	1.75 	2.34 44.144 5.856 400 453.06 2.21 7.79 Min 20

752 438.96 	10.974 	5.573 	1.97 	2.08 45.562 4.438 400 438.96 2.28 7.72 Min 20

775 592.32 	14.808 	7.288 	2.03 	2.06 33.766 16.234 400 592.32 1.69 8.31 Min 20

732 448.53 	11.213 	5.649 	1.98 	2.07 44.590 5.410 400 448.53 2.23 7.77 min 20

487 475.23 	11.881 	6.005 	1.98 	1.34 42.085 7.915 400 475.23 2.10 7.90 min 20

439 492.64 	12.316 	5.939 	2.07 	1.93 40.598 9.402 400 492.64 2.03 7.97 min 20

cDNA mix 1x 46

Rnase free H2O 4.2 193.2

10xRT Bx 2 92

dNTP mix 0.8 36.8

10xRandom Primers 2 92

Rnase Inhibitor 0

Rev Transcriptase 1 46

Total 10 460
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Table D.3: Real time PCR data for the gene PEPCK in time course samples for 

Aim1 

 

 

Table D.4: Real time PCR data for the gene TLR4 in time course samples for Aim1 

 

PEPCK GAPDH

Treatment Ct Ct Dct DDct fold change Normalized Dct DDct Fold change Norm

2580 19.21 23.285 -4.075 0.305 0.809 0.800

1927 18.995 23.34 -4.345 0.035 0.976 0.964 Apc Min -4.38 0.000 1.012 1.000

1998 18.27 23.445 -5.175 -0.795 1.735 1.714 (n=6) 0.248898 0.248898 0.168752 0.166797

1954 19.01 23.14 -4.13 0.250 0.841 0.831 12 week 0.078708 0.078708 0.053364 0.052746

1976 19.155 24.58 -5.425 -1.045 2.063 2.039

2075 18.07 22.71 -4.64 -0.260 1.197 1.183

Apc Min -4.63167 -0.25167 1.270382 1.255078

803 19.06 23.8 -4.74 -0.360 1.283426 1.268 (n=6) 0.560068 0.560068 0.516458 0.510237

439 18.99 23.7 -4.71 -0.330 1.257013 1.242 14 week 0.228647 0.228647 0.210843 0.208303 0.271467

487 19 23.335 -4.335 0.045 0.96929 0.958

752 18.125 24.165 -6.04 -1.660 3.160165 3.122 Apc Min -5.17667 -0.79667 1.900449 1.877555

775 18.095 23.59 -5.495 -1.115 2.16595 2.140 (n=6) 0.675409 0.675409 0.867554 0.857103

732 18.74 24.48 -5.74 -1.360 2.566852 2.536 20 week 0.275734 0.275734 0.354178 0.349911 0.033575

1855 18.06 22.22 -4.16 0.220 0.859 0.848

2477 19.315 23.805 -4.49 -0.110 1.079 1.066

2552 19.145 23.16 -4.015 0.365 0.776 0.767

2833 18.73 23.28 -4.55 -0.170 1.125 1.112

2810 18.375 23.05 -4.675 -0.295 1.226885 1.212

2859 19.45 23.84 -4.39 -0.010 1.006956 0.995

TLR4 GAPDH

Treatment Ct Ct Dct DDct fold change Normalized Dct DDct Fold change Norm

2502 30.44 18.875 11.565 1.178 0.442 0.308

2477 28.61 19.55 9.06 -1.327 2.508 1.746 C57BL/6 10.38667 0.000 1.436 1.000

2552 21.5 18.675 2.825 -7.562 188.925 131.539 (n=6) 1.792087 1.792087 0.90136907 0.555544

2833 21.805 19.13 2.675 -7.712 209.625 145.952 0.566708 0.566708 0.285037927 0.175679

2810 8.99 16.535 -7.545 -17.932 250017.000 174075.169

2859 28.26 19.275 8.985 -1.402 2.642 1.840 Apc Min 4.594167 -5.7925 41736.85687 29059.43

2580 29.795 18.835 10.96 0.573 0.672 0.468 (n=6) 6.95684 6.95684 102036.0607 71042.95

1954 22.565 19.18 3.385 -7.002 128.148 89.223 12 week 2.840118 2.840118 41656.04733 29003.16 0.340016

1998 28.715 19.445 9.27 -1.117 2.168 1.510

1927 21.42 18.96 2.46 -7.927 243.313 169.407 Apc Min 7.316667 -3.07 63.36979354 44.12143

1976 28.73 20.335 8.395 -1.992 3.977 2.769 (n=6) 3.514643 3.514643 101.5413483 70.6985

2075 28.78 19.35 9.43 -0.957 1.941 1.351 14 week 1.434847 1.434847 41.45408184 28.86254 0.166048

803 28.12 19.59 8.53 -1.857 3.621699045 2.522 Apc Min 8.629167 -1.7575 3.879987321 2.701454

439 26.54 19.305 7.235 -3.152 8.886816301 6.187 (n=6) 0.783648 0.783648 2.542685327 1.770353

487 29.155 19.545 9.61 -0.777 1.713168038 1.193 20 week 0.319923 0.319923 1.038046938 0.722744 0.048494

752 29.59 20.58 9.01 -1.377 2.596677176 1.808

775 28.915 20.195 8.72 -1.667 3.174802104 2.210

732 29.46 20.79 8.67 -1.717 3.286761258 2.288

2681 28.84 14.915 13.925 3.538 0.086 0.060

2700 28.25 18.56 9.69 -0.697 1.621 1.128

2651 28.33 19.025 9.305 -1.082 2.116 1.474

1203 28.775 19.225 9.55 -0.837 1.786 1.243

1177 28.63 19.32 9.31 -1.077 2.109157259 1.469

1155 30.175 19.635 10.54 0.153 0.899170536 0.626
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Table D.5: Real time PCR raw data for the gene PEPCK in time course samples for 

Aim1 

 

  

PFK GAPDH

Treatment Ct Ct Dct DDct fold changeNormalized Dct DDct Fold change Norm

2502 28.97 22.76 6.21 0.306 0.809 0.798

2477 29.075 23.165 5.91 0.006 0.996 0.982 C57BL/6 5.904167 0.000 1.014 1.000

2552 27.9 22.545 5.355 -0.549 1.463 1.443 (n=6) 0.258871 0.258871 0.241891 0.186642

2833 28.75 23.065 5.685 -0.219 1.164 1.148 0.081862 0.081862 0.076493 0.059021

2810 28.275 23.19 5.085 -0.819 1.764 1.740

2859 28.38 23.68 4.7 -1.204 2.304 2.273

Apc Min 5.490833 -0.41333 1.416778 1.397

2580 29.295 23.18 6.115 0.211 0.864 0.852 (n=6) 0.554828 0.554828 0.551471 0.543945

1927 29.075 22.97 6.105 0.201 0.870 0.858 12 week 0.226508 0.226508 0.225137 0.222065 0.121347

1998 28.885 23.77 5.115 -0.789 1.728 1.704

1954 28.49 22.935 5.555 -0.349 1.274 1.256 Apc Min 5.608333 -0.29583 1.269263 1.251942

1976 29.38 24.07 5.31 -0.594 1.510 1.489 (n=6) 0.415616 0.415616 0.346992 0.342257

2075 28.715 23.265 5.45 -0.454 1.370 1.351 14 week 0.169675 0.169675 0.141659 0.139726 0.144496

803 25.42 24.205 1.215 -4.689 25.79763 25.446 Apc Min 2.3075 -3.59667 13.99675 13.80574

439 27.095 23.235 3.86 -2.044 4.12435 4.068 (n=6) 0.916934 0.916934 7.457919 7.356145

487 25.09 23.255 1.835 -4.069 16.78577 16.557 20 week 0.374337 0.374337 3.044683 3.003134 0.001656

752 26.3 24.4 1.9 -4.004 16.04628 15.827

775 26.055 23.29 2.765 -3.139 8.810151 8.690

732 27.31 25.04 2.27 -3.634 12.41633 12.247

1855 29.805 24.33 5.475 -0.429 1.346 1.328

2700 28.4 22.35 6.05 0.146 0.904 0.892

2651 30.1 24.13 5.97 0.066 0.955 0.942

1203 29.87 23.625 6.245 0.341 0.790 0.779

1177 29.075 23.205 5.87 -0.034 1.023965 1.010

1155 29.915 24.1 5.815 -0.089 1.063756 1.049
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Table D.6:  Raw Data for quantification of Akt western blots by Image J for the B6 

VS Min Comparison 

 

Table D.7:  Raw data for quantification of Albumin western blots by Image J for the 

B6 VS Min Comparison 

 

2.118709

Area Mean Min Max pixels Pixels - BkgrdAvg statistics Ratio Normalized to 12 week

1 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 156.226 117 204 6.873944 1.756436 2.109609 0.247829 1.744171 0.823223 1.001654 0.827393

2 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 149.201 118 203 6.564844 1.447336 0.601695 1.534274 0.724155 0.336526

3 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 154.96 121 212 6.81824 1.700732 0.245641 1.46933 0.693503 0.137386

4 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 184.72 133 215 8.12768 3.010172 3.337945 1.575462

5 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 176.032 130 216 7.745408 2.6279 2.507825 1.183657

6 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 164.377 124 213 7.232588 2.11508 2.13973 1.009921

7 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 195.95 137 216 8.6218 3.504292 3.079054 3.060431 1.444479 1.050397

8 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 199.851 133 218 8.793444 3.675936 1.284394 3.078075 1.452807 0.384378

9 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 175.246 132 212 7.710824 2.593316 0.524352 2.094241 0.988452 0.156922

10 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 158.176 127 188 6.959744 1.842236 1.464612 0.691276

11 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 155.876 114 207 6.858544 1.741036 1.430065 0.67497

12 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 113.387 106 123 4.989028 5.117508

13 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 114.697 110 120 5.046668

14 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 117.608 109 126 5.174752

15 pAkt_th308B6_12_08-31-2013 10;11;35PM.tif0.044 119.536 111 140 5.259584

Area Mean Min Max pixels Pixels - BkgrdAvg statistics

1 t-Akt_09-24-2013 12;32;03PM.tif0.012 182.327 104 220 2.187924 1.007032 1.00767 0.001258

2 t-Akt_09-24-2013 12;32;03PM.tif0.012 177.019 113 219 2.124228 0.943336 0.099166

3 t-Akt_09-24-2013 12;32;03PM.tif0.012 194.865 118 219 2.33838 1.157488 0.040484

4 t-Akt_09-24-2013 12;32;03PM.tif0.012 173.558 106 215 2.082696 0.901804

5 t-Akt_09-24-2013 12;32;03PM.tif0.012 185.731 110 216 2.228772 1.04788

6 t-Akt_09-24-2013 12;32;03PM.tif0.012 180.781 117 219 2.169372 0.98848

7 t-Akt_09-24-2013 12;32;03PM.tif0.012 193.827 123 215 2.325924 1.145032 1.210571

8 t-Akt_09-24-2013 12;32;03PM.tif0.012 197.927 135 215 2.375124 1.194232 0.043625

9 t-Akt_09-24-2013 12;32;03PM.tif0.012 201.6 138 218 2.4192 1.238308 0.01951

10 t-Akt_09-24-2013 12;32;03PM.tif0.012 203.227 148 220 2.438724 1.257832

11 t-Akt_09-24-2013 12;32;03PM.tif0.012 199.862 145 217 2.398344 1.217452

12 t-Akt_09-24-2013 12;32;03PM.tif0.012 99.031 91 114 1.188372 1.180892

13 t-Akt_09-24-2013 12;32;03PM.tif0.012 98.488 88 114 1.181856

14 t-Akt_09-24-2013 12;32;03PM.tif0.012 97.704 90 115 1.172448

p-Akt Th308

t-Akt 

Albumin

Sr. No. Sample # Genotype Area Mean Min Max Pixel Minus Bckgrd Stats Normalized to B6 Stats ttest

1 416 C57BL/6 84 1637.631 1039 2180 137561 98355.32 111537.3 0.881815279 1 0.001977

2 608 C57BL/6 84 1789.226 1123 2469 150295 111089.3 9068.687 0.995983156 0.081306

3 1080 C57BL/6 84 1782.345 1001 2558 149717 110511.3 3702.276 0.990800999 0.033193

4 1155 C57BL/6 84 1845.417 912 2936 155015 115809.3 1.038301222

5 1177 C57BL/6 84 1964.179 681 3205 164991 125785.4 1.127742203

6 1203 C57BL/6 84 1748.56 694 2784 146879 107673.4 0.96535714

7 2810 Min 84 1684.69 678 2890 141514 102308.3 88997.97 0.917255934 0.797921

8 2502 Min 84 1615.595 662 2527 135710 96504.3 9729.658 0.865219723 0.087232

9 2552 Min 84 1581.56 758 2454 132851 93645.36 3972.116 0.839587586 0.035612

10 2790 Min 84 1417.738 768 2043 119090 79884.31 0.716211419

11 2833 Min 84 1418.607 503 2119 119163 79957.3 0.716865873

12 2477 Min 84 1439.214 519 2176 120894 81688.29 0.732385233

13 Blank 84 463.798 360 676 38959.03 39205.68 0.351502808

14 blank 84 498.976 408 604 41913.98

15 Blank 84 437.429 352 532 36744.04

Backgrou

nd
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Table D.8:  Raw data for quantification of MMP-2 western blots by Image J for the 

B6 VS Min Comparison 

 

 

Table D.9:  Raw data for quantification of NF-κB western blots by Image J for the 

B6 VS Min Comparison 

 

MMP-2

Area Mean Min Max Pixels Pixel - Bckgrd Normalized to B6Statistics ttest

1 FP_B6_12_wk_Min_7sec.TIF 50 499.02 338 798 24951 8741.333 9437.667 0.926218 1.000 0.026534

2 FP_B6_12_wk_Min_7sec.TIF 50 426.3 341 660 21315 5105.333 9844.000 0.540953 0.254

3 FP_B6_12_wk_Min_7sec.TIF 50 510.76 342 974 25538 9328.333 2459.884 0.988415 0.104

4 FP_B6_12_wk_Min_7sec.TIF 50 546.26 320 936 27313 11103.33 1004.243 1.176491

5 FP_B6_12_wk_Min_7sec.TIF 50 536.46 346 756 26823 10613.33 1.124572

6 FP_B6_12_wk_Min_7sec.TIF 50 558.88 355 838 27944 11734.33 1.243351

7 FP_B6_12_wk_Min_7sec.TIF 50 547.78 333 758 27389 11179.33 1.184544 1.301

8 FP_B6_12_wk_Min_7sec.TIF 50 588.66 342 1125 29433 13223.33 10581.000 1.401123 0.128

9 FP_B6_12_wk_Min_7sec.TIF 50 565.24 345 1079 28262 12052.33 4830.644 1.277046 0.052

10 FP_B6_12_wk_Min_7sec.TIF 50 602.98 375 967 30149 13939.33 1972.102 1.476989

11 FP_B6_12_wk_Min_7sec.TIF 50 574.86 363 796 28743 12533.33 1.328012

12 FP_B6_12_wk_Min_7sec.TIF 50 539.58 343 925 26979 10769.33 1.141101

13 FP_B6_12_wk_Min_7sec.TIF 50 343.56 305 435 17178 968.3333 0.098368

14 FP_B6_12_wk_Min_7sec.TIF 50 342.24 310 466 17112

15 FP_B6_12_wk_Min_7sec.TIF 50 317.7 293 346 15885

16 FP_B6_12_wk_Min_7sec.TIF 50 312.64 290 346 15632

16209.67

p-p65

Sample ID Area Intensity Min Max Area Pixels
Pixels - 

bckgrd

normalized 

to t-nFkB
Stats

normaliz

ed to B6
Stats

1 Aditi_p-NFkB Blot.jpg2132 142.112 75 228 100 302982.8 146222.2 0.42847172 0.350242 1.223359 1

2 Aditi_p-NFkB Blot.jpg2132 159.58 75 226 100 340224.6 183463.9 0.52186407 0.15932 1.49001 0.454887

3 Aditi_p-NFkB Blot.jpg2132 162.524 75 238 100 346501.2 189740.5 0.47684173 0.065042 1.361463 0.185707

4 Aditi_p-NFkB Blot.jpg2132 126.219 70 214 100 269098.9 112338.3 0.3484934 0.995007

5 Aditi_p-NFkB Blot.jpg2132 103.776 72 186 100 221250.4 64489.8 0.21343431 0.609391

6 Aditi_p-NFkB Blot.jpg2132 93.667 70 167 100 199698 42937.41 0.11234705 0.32077

7 Aditi_p-NFkB Blot.jpg2132 121.044 71 210 100 258065.8 101305.2 0.29503247 0.443938 0.842367 1.267518

8 Aditi_p-NFkB Blot.jpg2132 136.601 74 228 100 291233.3 134472.7 0.34434647 0.116051 0.983167 0.331345

9 Aditi_p-NFkB Blot.jpg2132 160.682 79 227 100 342574 185813.4 0.54952621 0.047378 1.56899 0.135271

10 Aditi_p-NFkB Blot.jpg2132 161.777 75 236 100 344908.6 188147.9 0.43714129 1.248112

11 Aditi_p-NFkB Blot.jpg2132 151.631 74 237 100 323277.3 166516.7 0.43864515 1.252406

12 Aditi_p-NFkB Blot.jpg2132 198.707 80 242 100 423643.3 266882.7 0.59893705 1.710066

C57BL/6

12 week 

Min
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Table D.10:  Raw data for quantification of STAT-3 western blots by Image J for 

the B6 VS Min Comparison 

Area mean Min Max Pixels Bkg Mean - BkgAvg/Std ttest

16 0.031 102.136 82 137 3.166216 0.450575 0.654627

17 0.031 97.923 81 125 3.035613 0.319972 0.287816

18 0.031 107.559 83 147 3.334329 0.618688 0.00745

19 0.031 104.923 85 154 3.252613 0.536972

20 0.031 118.15 86 146 3.66265 0.947009

21 0.031 121.619 92 157 3.770189 1.054548

22 0.031 171.07 109 207 5.30317 2.587529 1.964331

23 0.031 157.766 107 201 4.890746 2.175105 1.070287

24 0.031 183.287 125 205 5.681897 2.966256

25 0.031 178.101 119 203 5.521131 2.80549

26 0.031 107.951 86 141 3.346481 0.63084

27 0.031 107.626 83 171 3.336406 0.620765

28 0.031 184.021 101 205 5.704651 2.98901

29 0.031 85.416 81 92 2.647896 2.715641

30 0.031 89.885 85 98 2.786435

31 0.031 87.503 81 98 2.712593

STAT-3
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WESTERN RESULTS FOR CACHEXIA PROGRESSION (12 VS 14 VS 20 WEEK) 

Table D.11:  Raw data for quantification of MMP-2 western blots by Image J for the 

12 vs 14 vs 20 week ApcMin/+ Comparison for Aim 1 

 

Table D.12:  Raw data for quantification of p-65 western blots by Image J for the 12 

vs 14 vs 20 week ApcMin/+ Comparison for Aim 1 

 

 

p-p65

Sample ID Area Intensity Min Max Area Pixels
Pixels - 

bckgrd

normaliz

ed to 

gapdh

Stats
normaliz

ed to B6
Stats

7 Aditi_p-NFkB Blot.jpg2132 121.044 71 210 100 258065.8 101305.2 44254.46 74859.73 0.591165 1

8 Aditi_p-NFkB Blot.jpg2132 136.601 74 228 100 291233.3 134472.7 60107.59 24057.95 0.802936 0.321374

9 Aditi_p-NFkB Blot.jpg2132 160.682 79 227 100 342574 185813.4 82905.03 9821.616 1.107472 0.1312

10 Aditi_p-NFkB Blot.jpg2132 161.777 75 236 100 344908.6 188147.9 78821.79 1.052927

11 Aditi_p-NFkB Blot.jpg2132 151.631 74 237 100 323277.3 166516.7 68049.87 0.909032

12 Aditi_p-NFkB Blot.jpg2132 198.707 80 242 100 423643.3 266882.7 115019.6 1.536469

13 Aditi_p-NFkB Blot.jpg2132 165.302 76 236 100 352423.9 195663.2 85027.05 52881.41 1.135818 0.706407

14 Aditi_p-NFkB Blot.jpg2132 136.159 73 223 100 290291 133530.4 55861 20082.34 0.746209 0.268266

15 Aditi_p-NFkB Blot.jpg2132 141.051 72 224 100 300720.7 143960.1 61454.91 8198.58 0.820934 0.109519

16 Aditi_p-NFkB Blot.jpg2132 106.796 69 178 100 227689.1 70928.44 31099.15 0.415432

17 Aditi_p-NFkB Blot.jpg2132 108.861 71 190 100 232091.7 75331.02 32275.81 0.431151

18 Aditi_p-NFkB Blot.jpg2132 131.286 73 220 100 279901.8 123141.1 51570.52 0.688895

19 Aditi_p-NFkB Blot.jpg2132 102.994 69 177 100 219583.2 62822.58 28444.45 19999.99 0.37997 0.267166

20 Aditi_p-NFkB Blot.jpg2132 94.39 67 153 100 201239.5 44478.85 31299.68 23119.65 0.418111 0.30884

21 Aditi_p-NFkB Blot.jpg2132 75.404 67 90 100 160761.3 4000.698 937.6949 9438.556 0.012526 0.126083

22 Aditi_p-NFkB Blot.jpg2132 76.579 67 94 100 163266.4 6505.798 3130.972 0.041825

23 Aditi_p-NFkB Blot.jpg2132 72.538 67 104 100 154651 -2109.61 -1015.27 -0.01356

24 Aditi_p-NFkB Blot.jpg2132 129.278 59 217 100 275620.7 118860.1 57202.44 0.764128

background 25 Aditi_p-NFkB Blot.jpg2132 72.981 44 84 100 155595.5 156760.6

background 26 Aditi_p-NFkB Blot.jpg2132 74.074 68 86 100 157925.8

12 week 

Min

14 week 

Min

20 week 

Min
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Table D.13:  Raw data for quantification of STAT-3 western blots by Image J for 

the 12 vs 14 vs 20 week ApcMin/+ Comparison in Aim 1 

 

 

 

Table D.14:  Raw data for quantification of Albumin western blots by Image J for 

the 12 vs 14 vs 20 week ApcMin/+ Comparison in Aim 1 

 

 

 

Area mean Min Max Pixels Bkg Mean - BkgAvg/Std ttest

1 0.033 125.417 88 161 4.138761 1.116902 1.151733 0.472245

2 0.033 121.443 89 163 4.007619 0.98576 0.035093

3 0.033 146.107 99 185 4.821531 1.799672

4 0.033 112.923 93 142 3.726459 0.7046

5 0.033 134.463 95 177 4.437279 1.41542 0.913787 0.128524

6 0.033 123.28 97 157 4.06824 1.046381

7 0.033 108.597 90 135 3.583701 0.561842

8 0.033 129.273 99 172 4.266009 1.24415

9 0.033 100.697 87 128 3.323001 0.301142

10 0.033 106.21 88 135 3.50493 0.483071 0.488458

11 0.033 110.293 92 139 3.639669 0.61781

12 0.033 109.077 88 138 3.599541 0.577682

13 0.033 99.913 88 119 3.297129 0.27527

14 0.033 90.913 82 98 3.000129 3.02186 -0.02173

15 0.033 92.23 84 100 3.04359 0.021731

STAT-3

Albumin 0.941623

Area Mean Stdev Min Max Pixels Pixel - BckgrdAverage ttest NormalizedAverage

20 1 0.014 168.566 25.775 99 207 2.360 0.977 0.942 0.025 1.04 1.00

20 2 0.014 160.44 29.488 97 206 2.246 0.863 0.132 0.92 0.07

20 3 0.014 171.606 26.899 97 220 2.402 1.019 1.08 0.04

20 4 0.014 163.684 30.207 98 213 2.292 0.908 0.96

14 5 0.014 174.36 28.5 99 219 2.441 1.058 1.056 0.266 1.12 1.12

14 6 0.014 168.878 30.066 99 216 2.364 0.981 1.04 0.05

14 7 0.014 178.338 27.079 97 218 2.497 1.113 1.18 0.02

14 8 0.014 176.804 26.861 99 220 2.475 1.092 1.16

14 9 0.014 172.893 28.884 101 216 2.421 1.037 1.10

12 10 0.014 170.412 31.083 99 219 2.386 1.002 1.017 1.06 1.08

12 11 0.014 172.912 27.173 101 212 2.421 1.037 1.10 0.02

12 12 0.014 171.134 27.853 99 211 2.396 1.012 1.08 0.08

Bckgrd 13 0.014 97.372 1.609 93 112 1.363 1.383

Bckgrd 14 0.014 98.138 1.572 93 112 1.374

Bckgrd 15 0.014 99.307 3.284 93 117 1.390

Bckgrd 16 0.014 100.444 4.174 95 120 1.406
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Table D.15:  Raw data for quantification of p-S6 western blots by Image J for the 12 

vs 14 vs 20 week ApcMin/+ Comparison in Aim 1 

 

 

  

p-S6

Area Mean Min Max Area*IntensityMinus bckgrdnormalized to totalAvg/stdev/SE normalizedaverage

1 p-S6_09-24-2013 12;32;03PM.tif0.04 199.811 96 223 7.99244 4.23308 4.87756E-05 3.68413E-05 1.323939 1

2 p-S6_09-24-2013 12;32;03PM.tif0.04 194.537 111 229 7.78148 4.02212 4.28095E-05 9.00839E-06 1.162 0.244519

3 p-S6_09-24-2013 12;32;03PM.tif0.04 177.522 97 222 7.10088 3.34152 3.58895E-05 4.02867E-06 0.974166 0.109352

4 p-S6_09-24-2013 12;32;03PM.tif0.04 162.837 92 221 6.51348 2.75412 2.93617E-05 0.796978

5 p-S6_09-24-2013 12;32;03PM.tif0.04 159.31 91 220 6.3724 2.61304 2.737E-05 0.742916

6 p-S6_09-24-2013 12;32;03PM.tif0.04 157.497 92 219 6.29988 2.54052 2.62271E-05 2.35962E-05 0.711895 0.640482

7 p-S6_09-24-2013 12;32;03PM.tif0.04 161.456 95 220 6.45824 2.69888 2.79734E-05 5.63728E-06 0.759297 0.153015

8 p-S6_09-24-2013 12;32;03PM.tif0.04 158.203 95 223 6.32812 2.56876 2.66403E-05 2.52107E-06 0.72311 0.068431

9 p-S6_09-24-2013 12;32;03PM.tif0.04 149.086 92 220 5.96344 2.20408 2.31111E-05 0.627315

10 p-S6_09-24-2013 12;32;03PM.tif0.04 127.328 88 212 5.09312 1.33376 1.4029E-05 0.380795

11 p-S6_09-24-2013 12;32;03PM.tif0.04 97.629 88 143 3.90516 0.1458 1.54621E-06 4.87005E-06 0.04197 0.13219

12 p-S6_09-24-2013 12;32;03PM.tif0.04 103.116 86 162 4.12464 0.36528 3.95527E-06 2.88008E-06 0.10736 0.078175

13 p-S6_09-24-2013 12;32;03PM.tif0.04 106.953 87 148 4.27812 0.51876 5.57215E-06 1.44004E-06 0.151247 0.039088

14 p-S6_09-24-2013 12;32;03PM.tif0.04 111.534 88 206 4.46136 0.702 8.40656E-06 0.228183

15 p-S6_09-24-2013 12;32;03PM.tif0.04 93.176 87 99 3.72704 3.75936

16 p-S6_09-24-2013 12;32;03PM.tif0.04 94.937 89 122 3.79748

17 p-S6_09-24-2013 12;32;03PM.tif0.04 93.839 87 101 3.75356

t-S6

14 tS6_10-21-2013 10;46;48PM.jpg468 185.442 159 209 86786.86 86786.86

15 tS6_10-21-2013 10;46;48PM.jpg468 200.756 161 219 93953.81 93953.81

16 tS6_10-21-2013 10;46;48PM.jpg468 198.944 165 215 93105.79 93105.79

17 tS6_10-21-2013 10;46;48PM.jpg468 200.427 163 218 93799.84 93799.84

18 tS6_10-21-2013 10;46;48PM.jpg468 203.998 168 218 95471.06 95471.06

19 tS6_10-21-2013 10;46;48PM.jpg468 206.979 178 221 96866.17 96866.17

20 tS6_10-21-2013 10;46;48PM.jpg468 206.154 173 219 96480.07 96480.07

21 tS6_10-21-2013 10;46;48PM.jpg468 206.034 173 220 96423.91 96423.91

22 tS6_10-21-2013 10;46;48PM.jpg468 203.78 170 220 95369.04 95369.04

23 tS6_10-21-2013 10;46;48PM.jpg468 203.145 167 220 95071.86 95071.86

24 tS6_10-21-2013 10;46;48PM.jpg468 201.485 168 219 94294.98 94294.98

25 tS6_10-21-2013 10;46;48PM.jpg468 197.335 167 220 92352.78 92352.78

26 tS6_10-21-2013 10;46;48PM.jpg468 198.929 166 219 93098.77 93098.77

27 tS6_10-21-2013 10;46;48PM.jpg468 178.432 156 212 83506.18 83506.18

28 tS6_10-21-2013 10;46;48PM.jpg468 164.605 156 177 77035.14 76839.36

29 tS6_10-21-2013 10;46;48PM.jpg468 165.141 155 173 77285.99

30 tS6_10-21-2013 10;46;48PM.jpg468 162.814 155 173 76196.95
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RAW DATA FOR AIM 2: 

RNA EXTRACTION: 

Table D.16: Spectrophotometer reading for 400ng dilution and cDNA synthesis 

dilutions for the timecourse samples in Aim 2 

Sample ID 	Date  	260/280  	ng/ul RNA dil to 400 water Cal. Conc Acutal spec conc RNA H2O

105 	11/5/2013 	2.02 1770.5 11.30 38.70 400 442.5 2.259887 7.740113

684 	11/5/2013 	2.01 1592.94 12.56 37.44 400 446.79 2.238188 7.761812

3052 	11/5/2013 	2.00 1207.71 16.56 33.44 400 409.95 2.439322 7.560678

108 	11/5/2013 	1.98 3093.85 6.46 43.54 400 457.72 2.184742 7.815258

598 	11/5/2013 	1.98 852.42 23.46 26.54 400 493.32 2.027082 7.972918

658 	11/5/2013 	2.00 1127.55 17.74 32.26 400 448.71 2.228611 7.771389

3085 	11/5/2013 	2.01 1665.31 12.01 37.99 400 408.77 2.446363 7.553637

3048 	11/5/2013 	2.02 1149.866 17.39 32.61 400 436.44 2.291266 7.708734

660 	11/5/2013 	2.01 1607.03 12.45 37.55 400 408.02 2.45086 7.54914

2916 	11/5/2013 	2.00 2169.2 9.22 40.78 400 504.11 1.983694 8.016306

610 	11/5/2013 	2.00 1526.75 13.10 36.90 400 400.57 2.496443 7.503557

3112 	11/5/2013 	2.01 1330.05 15.04 34.96 400 440.46 2.270354 7.729646

3111 	11/5/2013 	1.98 3054.37 6.55 43.45 400 502.61 1.989614 8.010386

3113 	11/5/2013 	2.01 2036.57 9.82 40.18 400 471.16 2.122421 7.877579

3207 	11/5/2013 	2.01 1290.44 15.50 34.50 400 441.63 2.264339 7.735661

611 	11/5/2013 	2.00 1516.73 13.19 36.81 400 459.73 2.17519 7.82481

3221 	11/5/2013 	2.01 2103.43 9.51 40.49 400 489.43 2.043193 7.956807

3137 	11/5/2013 	2.02 1635.53 12.23 37.77 400 457.12 2.187609 7.812391

3218 	11/5/2013 	1.97 824.61 24.25 25.75 400 426.38 2.345326 7.654674

991 	11/5/2013 	2.00 925.14 21.62 28.38 400 447.83 2.23299 7.76701

988 	11/5/2013 	1.99 992.98 20.14 29.86 400 461.22 2.168163 7.831837

3086 	11/5/2013 	2.01 1569.38 12.74 37.26 400 443.5 2.254791 7.745209

990 	11/5/2013 	1.98 2702.37 7.40 42.60 400 470.08 2.127297 7.872703

3051 	11/5/2013 	2.01 1544.53 12.95 37.05 400 444.27 2.250883 7.749117

3209 	11/5/2013 	2.01 1661.13 12.04 37.96 400 451.73 2.213712 7.786288

106 	11/5/2013 	2.02 1869.22 10.70 39.30 400 461.24 2.168069 7.831931

992 	11/5/2013 	2.02 1532.46 13.05 36.95 400 474.44 2.107748 7.892252

989 	11/5/2013 	2.00 2166.41 9.23 40.77 400 479.49 2.085549 7.914451

3114 	11/5/2013 	2.00 1101.14 18.16 31.84 400 430.47 2.323042 7.676958

cDNA mix 1x 30

Rnase free H2O 4.2 126

10xRT Bx 2 60

dNTP mix 0.8 24

10xRandom Primers 2 60

Rnase Inhibitor 0

Rev Transcriptase 1 30

Total 10 300
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REAL TIME PCR DATA FOR PDTC AND FUSION PROTEIN 

Table D.17: Real time PCR raw data for the gene Haptaglobin in PDTC and fusion 

protein treated samples for Aim2 

Haptaglobin GAPDH

Treatment Ct Ct Dct DDct fold changeNormalized Dct DDct Fold change Norm

105 17.305 21.83 -4.525 -0.050 1.035 0.976

108 17.52 21.74 -4.22 0.255 0.838 0.790 C57BL/6 -4.475 0.000 1.060301937 1

106 18.385 22.595 -4.21 0.265 0.832 0.785 (n=6) 0.50061 0.50061 0.460604805 0.434409

998 16.795 22.26 -5.465 -0.990 1.986 1.873 0.204373 0.204373 0.188041124 0.177347

990 18.57 22.785 -4.215 0.260 0.835 0.788

991 17.995 22.21 -4.215 0.260 0.835 0.788

C57BL/6 + PDTC -4.611 -0.136 1.105872324 1.043

3048 18.59 22.99 -4.4 0.075 0.949 0.895 (n=5) 0.181535 0.181535 0.140212685 0.132238

3051 17.775 22.31 -4.535 -0.060 1.042 0.983 0.081185 0.081185 0.062705019 0.059139 0.837203

3052 18.41 23.24 -4.83 -0.355 1.279 1.206

3085 17.695 22.465 -4.77 -0.295 1.227 1.157 Apc Min -6.944 -2.469 6.333 5.972

3086 17.955 22.475 -4.52 -0.045 1.032 0.973 (n=4) 0.913649 0.913649 3.107234191 2.930518

14 week 0.408596 0.408596 1.389597375 1.310568 0.000705

660 15.34 21.955 -6.615 -2.140 4.40762 4.157

684 14.77 22.135 -7.365 -2.890 7.412704 6.991 Apc Min + PDTC -7.27125 -2.79625 7.21202576 6.80186

2916 14.35 21.805 -7.455 -2.980 7.889862 7.441 (n=4) 0.443046 0.443046 2.416693927 2.279251

537 16.56 24.345 -7.785 -3.310 9.917662 9.354 20 week 0.221523 0.221523 1.208346963 1.139625 0.657457

803 18.83 24.33 -5.5 -1.025 2.034959 1.919

598 14.76 22.025 -7.265 -2.790 6.916 6.523 Apc Min+gp130FP -6.82875 -2.35375 5.179743024 4.885159

610 15.18 22.075 -6.895 -2.420 5.352 5.047 (n=4) 0.270382 0.270382 0.982206849 0.926346

611 14.17 22.065 -7.895 -3.420 10.703 10.095 20 week 0.135191 0.135191 0.491103425 0.463173 0.503188

658 15.08 22.11 -7.03 -2.555 5.877 5.542

3111 15.965 22.825 -6.86 -2.385 5.223 4.926

3112 16.25 22.765 -6.515 -2.040 4.112 3.879

3113 15.18 22.35 -7.17 -2.695 6.476 6.107

3114 15.82 22.59 -6.77 -2.295 4.908 4.628

C57BL/6

B6 + PDTC

Apc Min/+

Apc Min/+ + 

PDTC

Apc 
Min/+gp13

0 fusion 

protein
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Table D.18: Real time PCR raw data for the gene PEPCK in PDTC and fusion 

protein treated samples for Aim2 

 

 

PEPCK GAPDH

Treatment Ct Ct Dct DDct fold change Normalized Dct DDct Fold change Norm

990 19.05 22.39 -3.34 0.625 0.648 0.610

991 17.165 21.885 -4.72 -0.755 1.688 1.587 C57BL/6 -3.965 0.000 1.063134178 1.000

988 18.16 22.16 -4 -0.035 1.025 0.964 (n=6) 0.574195 0.574195 0.444516458 0.418119

105 17.77 21.57 -3.8 0.165 0.892 0.839 0.287098 0.287098 0.222258229 0.209059

3048 17.78 22.955 -5.175 -1.210 2.313 2.176

3051 17.615 22.4 -4.785 -0.820 1.765 1.661 C57BL/6 + PDTC -4.93125 -0.96625 1.966272811 1.850

3052 18.3 23.085 -4.785 -0.820 1.765 1.661 (n=5) 0.186698 0.186698 0.260870519 0.245379

3085 17.335 22.315 -4.98 -1.015 2.021 1.901 0.093349 0.093349 0.130435259 0.122689 0.012756

660 17.56 21.38 -3.82 0.145 0.904 0.851 Apc Min -4.243 -0.277 1.236 1.162

684 18.045 22.26 -4.215 -0.250 1.189 1.119 (n=4) 0.330164 0.330164 0.275867791 0.259485

2916 17.125 21.44 -4.315 -0.350 1.275 1.199 14 week 0.165082 0.165082 0.137933896 0.129743 8.71E-05

537 19.67 24.29 -4.62 -0.655 1.575 1.481

Apc Min + PDTC -3.355 0.61 0.661141987 0.622

598 18.19 21.615 -3.425 0.540 0.688 0.647 (n=4) 0.223644 0.223644 0.102917364 0.096806

610 18.54 21.81 -3.27 0.695 0.618 0.581 20 week 0.111822 0.111822 0.051458682 0.048403 0.00796

611 18.72 21.82 -3.1 0.865 0.549 0.516

658 17.945 21.57 -3.625 0.340 0.790 0.743

3207 17.135 21.955 -4.82 -0.855 1.809 1.701

3209 17.785 22.805 -5.02 -1.055 2.078 1.954

3218 17.445 24.055 -6.61 -2.645 6.255 5.884

3221 16.42 21.61 -5.19 -1.225 2.338 2.199

3111 17.25 22.18 -4.93 -0.965 1.952 1.836

3112 17.515 22.385 -4.87 -0.905 1.873 1.761

3113 17.4 22.505 -5.105 -1.140 2.204 2.073

3114 18.03 22.69 -4.66 -0.695 1.619 1.523

Apc Min/+ + 

PDTC

Apc 
Min/+gp13

0 fusion 

protein

C57BL/6

B6 + PDTC

B6 + 

gp130 

fusion 

protein

Apc Min/+
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Table D.19: Real time PCR raw data for the gene PEPCK in PDTC and fusion 

protein treated samples for Aim2 

 

PFK GAPDH

Treatment Ct Ct Dct DDct fold change Normalized Dct DDct Fold change Norm

108 29.53 22.17 7.36 0.809 0.571 0.544

991 28.4 22.09 6.31 -0.241 1.182 1.127 C57BL/6 6.55125 0.000 1.049279225 1.000

988 27.985 21.845 6.14 -0.411 1.330 1.267 (n=6) 0.54949 0.54949 0.331381193 0.315818

105 28.49 22.095 6.395 -0.156 1.114 1.062 0.274745 0.274745 0.165690597 0.157909

3048 28.545 22.575 5.97 -0.581 1.496 1.426

3051 28.315 22.48 5.835 -0.716 1.643 1.566 C57BL/6 + PDTC 6 -0.55125 1.472673138 1.404

3052 28.94 22.705 6.235 -0.316 1.245 1.187 (n=5) 0.168276 0.168276 0.165803116 0.158016

3085 29.145 23.185 5.96 -0.591 1.507 1.436 0.084138 0.084138 0.082901558 0.079008 0.062349

660 25.885 21.31 4.575 -1.976 3.935 3.750 Apc Min 3.781 -2.770 13.461 12.829

684 25.84 22.065 3.775 -2.776 6.851 6.529 (n=4) 1.879554 1.879554 18.53884899 2.347615

2916 27.395 21.81 5.585 -0.966 1.954 1.862 14 week 0.939777 0.939777 9.269424495 1.173807 0.000434

803 25.525 24.335 1.19 -5.361 41.105 39.175

Apc Min + PDTC 3.22875 -3.3225 10.20457079 9.725

598 25.315 21.975 3.34 -3.211 9.262 8.827 (n=4) 0.321154 0.321154 2.500811731 2.383362

610 24.69 21.94 2.75 -3.801 13.941 13.286 20 week 0.160577 0.160577 1.250405866 1.191681 0.025719

611 25.13 21.73 3.4 -3.151 8.884 8.467

658 25.205 21.78 3.425 -3.126 8.732 8.322

3207 28.315 22.18 6.135 -0.416 1.334 1.272

3209 29.365 23.065 6.3 -0.251 1.190 1.134

3218 29.835 24.835 5 -1.551 2.931 2.793

3221 28.14 22.195 5.945 -0.606 1.522 1.451

3111 26.555 21.815 4.74 -1.811 3.509 3.345

3112 28.13 22.79 5.34 -1.211 2.315 2.207

3113 27.905 23.175 4.73 -1.821 3.534 3.368

3114 27.25 22.89 4.36 -2.191 4.567 4.353

C57BL/6

B6 + PDTC

Apc Min/+

Apc Min/+ + 

PDTC

B6 + 

gp130 

fusion 

protein

Apc 
Min/+gp13

0 fusion 

protein
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WESTERN DATA FOR PDTC 

Table D.20:  Raw data for quantification of MMP-2 western blots by Image J for the 

PDTC and fusion protein treated samples for Aim2 

Area mean Min Max Pixels Bkg Mean - BkgAvg/Std ttest

1 0.031 189.897 121 216 5.886807 2.958826 3.303649 0.447833

2 0.031 205.716 149 220 6.377196 3.449215 0.036655

3 0.031 207.448 158 221 6.430888 3.502907

4 0.031 207.355 160 223 6.428005 3.500024

5 0.031 203.129 143 222 6.296999 3.369018 3.453462 0.00247

6 0.031 207.075 158 223 6.419325 3.491344

7 0.031 185.629 136 220 5.754499 2.826518 1.30834 0.637547

8 0.031 126.743 93 182 3.929033 1.001052

9 0.031 94.924 86 106 2.942644 0.014663

10 0.031 139.326 92 206 4.319106 1.391125

11 0.031 98.141 87 128 3.042371 0.11439 0.938362

12 0.031 116.125 90 171 3.599875 0.671894

13 0.031 167.841 108 216 5.203071 2.27509

14 0.031 116.776 86 181 3.620056 0.692075

15 0.031 94.451 85 106 2.927981 2.927981 0

PDTC MMP2
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Table D.21:  Raw data for quantification of STAT-3 western blots by Image J for 

the PDTC and fusion protein treated samples for Aim2 

 

Sr No Title Area Intensity Min Max Pixels Pixel - Bckgrdphospho: total Stats B6 Normalized STATS

1 PDTC_pSTAT3 324 80.37 79 83 26039.88 273.56 0.01 0.09 0.11 1

2 PDTC_pSTAT3 324 81.571 79 86 26429.00 662.69 0.03 0.12 0.30 1.379306

3 PDTC_pSTAT3 324 97.358 81 127 31543.99 5777.68 0.23 0.07 2.59 0.796343

4 PDTC_pSTAT3 324 94.09 84 109 30485.16 4718.84 0.15 0.13 1.70 1.49265

5 PDTC_pSTAT3 324 88.957 82 100 28822.07 3055.75 0.10 0.03 1.10 0.338834

6 PDTC_pSTAT3 324 94.716 84 115 30687.98 4921.67 0.15 0.02 1.67 0.195626

7 PDTC_pSTAT3 324 156.679 85 210 50764.00 24997.68 0.66 0.58 7.34 6.44014

8 PDTC_pSTAT3 324 149.784 87 211 48530.02 22763.70 0.58 0.06 6.40 0.692824

9 PDTC_pSTAT3 324 150.287 88 206 48692.99 22926.67 0.57 0.03 6.36 0.346412

10 PDTC_pSTAT3 324 145.988 85 208 47300.11 21533.80 0.51 5.66

11 PDTC_pSTAT3 324 166.201 90 208 53849.12 28082.81 0.72 0.62 7.99 6.833021

12 PDTC_pSTAT3 324 156.543 88 212 50719.93 24953.62 0.65 0.32 7.24 3.496476

13 PDTC_pSTAT3 324 173.997 89 212 56375.03 30608.71 0.92 0.16 10.17 1.748238

14 PDTC_pSTAT3 324 97.454 78 160 31575.10 5808.78 0.17 1.93

15 PDTC_pSTAT3 324 79.929 78 83 25897.00 25766.32 0.00

16 PDTC_pSTAT3 324 78.941 78 81 25576.88

17 PDTC_pSTAT3 324 79.707 78 81 25825.07

Sr No Title Area Intensity Min Max Pixels Pixel - Bckgrd

18 t-STAT3 403 163.73 86 214 65983.2 28240.8

19 t-STAT3 403 153.494 85 212 61858.1 24115.7

20 t-STAT3 403 154.955 85 213 62446.9 24704.4

21 t-STAT3 403 169.834 90 213 68443.1 30700.7

22 t-STAT3 403 169.834 90 213 68443.1 30700.7

23 t-STAT3 403 174.357 90 213 70265.9 32523.4

24 t-STAT3 403 187.132 92 214 75414.2 37671.8

25 t-STAT3 403 191.303 97 214 77095.1 39352.7

26 t-STAT3 403 192.72 95 215 77666.2 39923.7

27 t-STAT3 403 198.203 106 215 79875.8 42133.4

28 t-STAT3 403 190.174 94 214 76640.1 38897.7

29 t-STAT3 403 188.278 93 214 75876.0 38133.6

30 t-STAT3 403 176.33 85 213 71061.0 33318.6

31 t-STAT3 403 176.33 85 213 71061.0 33318.6

32 t-STAT3 403 84.953 80 91 34236.1 37742.4

33 t-STAT3 403 110.953 81 255 44714.06

34 t-STAT3 403 85.055 81 108 34277.17
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Table D.22:  Raw data for quantification of gp130 western blots by Image J for the 

PDTC treated samples for Aim2 

 

 

Table D.23:  Raw data for quantification of Albumin western blots by Image J for 

the PDTC treated samples for Aim2 

Sr No Title Area Intensity Min Max Pixels Pixel - BckgrdGAPDH Normalized Stats B6 Normalized STATS

1 PDTC_gp130 660 175.879 144 197 116080.1 22077.33 3347.460171 2493.73 1.342350129 1.00

2 PDTC_gp130 660 156.064 137 191 103002.2 8999.43 1289.872484 1072.55 0.517246033 0.43

3 PDTC_gp130 660 170.667 142 202 112640.2 18637.41 2843.860436 619.24 1.140403837 0.25

4 PDTC_gp130 660 143.8 138 153 94908 905.19 123.9634449 196.45 0.04971003 0.08

5 PDTC_gp130 660 147.27 139 163 97198.2 3195.39 503.0386438 277.54 0.201721291 0.11

6 PDTC_gp130 660 142.052 20 195 93754.32 -248.49 -37.65369691 160.24 -0.015099342 0.06

7 PDTC_gp130 660 183.303 80 213 120980 26977.17 4058.054926 4643.67 1.627302574 1.86

8 PDTC_gp130 660 193.276 152 210 127562.2 33559.35 5161.382453 551.67 2.069743044 0.22

9 PDTC_gp130 660 194.986 151 210 128690.8 34687.95 5064.744666 275.83 2.030990754 0.11

10 PDTC_gp130 660 186.467 146 206 123068.2 29065.41 4290.487519 137.92 1.720509336

11 PDTC_gp130 660 188.088 150 207 124138.1 30135.27 4347.770949 4236.32 1.74348031 1.70

12 PDTC_gp130 660 176.524 146 206 116505.8 22503.03 3303.943937 745.70 1.324899878 0.30

13 PDTC_gp130 660 197.88 162 211 130600.8 36597.99 5120.863207 372.85 2.053494601 0.15

14 PDTC_gp130 660 188.218 153 211 124223.9 30221.07 4172.682462 1.673268853

15 PDTC_gp130 660 141.83 137 152 93607.8 94002.81

16 PDTC_gp130 660 143.027 134 158 94397.82

Sr No Title Area Intensity Min Max Pixels Pixel - BckgrdGAPDH NormalizedStats B6 Normalized STATS

1 Albumin_PDTC 704 135.683 86 166 95520.83 51113.5 7750.042 7536.464 1.03 1

2 Albumin_PDTC 704 127.562 82 164 89803.65 45396.3 6506.567 0.86 0.12492

3 Albumin_PDTC 704 140.835 87 170 99147.84 54740.5 8352.782 1.11 0.072123

4 Albumin_PDTC 704 135.878 82 172 95658.11 51250.7 7018.656 0.93 1.013177

5 Albumin_PDTC 704 133.361 84 173 93886.14 49478.8 7789.262 1.03 0.073838

6 Albumin_PDTC 704 139.003 83 171 97858.11 53450.7 8099.391 1.07 0.04263

7 Albumin_PDTC 704 104.074 66 161 73268.1 28860.7 4341.388 0.58 0.828511

8 Albumin_PDTC 704 137.391 71 168 96723.26 52315.9 8046.112 1.07 0.204404

9 Albumin_PDTC 704 127.73 67 170 89921.92 45514.5 6645.521 0.88 0.102202

10 Albumin_PDTC 704 120.268 64 163 84668.67 40261.3 5943.166 0.79

11 Albumin_PDTC 704 111.754 65 162 78674.82 34267.4 4943.94 0.66 0.568747

12 Albumin_PDTC 704 116.562 62 165 82059.65 37652.3 5528.188 0.73 0.218874

13 Albumin_PDTC 704 111.982 62 163 78835.33 34427.9 4817.226 0.64 0.109437

14 Albumin_PDTC 704 82.173 52 145 57849.79 13442.4 1856.02 0.25

15 Albumin_PDTC 704 55.104 49 59 38793.22 44407.4

16 Albumin_PDTC 704 66.891 61 76 47091.26

17 Albumin_PDTC 704 67.241 62 80 47337.66
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Table D.24:  Raw data for quantification of S6 western blots by Image J for the 

PDTC treated samples for Aim2 

 

 

Sr No Title Area Intensity Min Max Pixels Pixel - Bckgrd Stats B6 Normalized STATS

1 PDTC_S6 544 151.096 84 216 82196.22 32492.39 28616.76 1.14 1

2 PDTC_S6 544 118.938 84 186 64702.27 14998.44 12153.16 0.52 0.424687

3 PDTC_S6 544 161.881 88 216 88063.26 38359.43 7016.63 1.34 0.245193

4 PDTC_S6 544 189.675 108 219 103183.2 53479.37 56578.36 1.87 1.977106

5 PDTC_S6 544 201.71 128 220 109730.2 60026.41 3287.45 2.10 0.114878

6 PDTC_S6 544 194.73 105 220 105933.1 56229.29 1898.01 1.96 0.066325

7 PDTC_S6 544 147.217 87 211 80086.05 30382.22 21615.11 1.06 0.755331

8 PDTC_S6 544 133.415 84 205 72577.76 22873.93 11848.22 0.80 0.414031

9 PDTC_S6 544 99.658 82 139 54213.95 4510.12 5924.11 0.16 0.207015

10 PDTC_S6 544 144.114 86 213 78398.02 28694.19 1.00

11 PDTC_S6 544 96.079 86 120 52266.98 2563.15 27379.75 0.09 0.956773

12 PDTC_S6 544 168.061 97 223 91425.18 41721.35 17417.06 1.46 0.608631

13 PDTC_S6 544 158.866 92 216 86423.1 36719.27 8708.53 1.28 0.304316

14 PDTC_S6 544 143.785 88 212 78219.04 28515.21 1.00

15 PDTC_S6 544 96.11 87 151 52283.84 49703.83 1.74

16 PDTC_S6 544 89.031 83 121 48432.86

17 PDTC_S6 544 88.961 83 108 48394.78
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Table D.25:  Raw data for quantification of p-65 western blots by Image J for the 

PDTC treated samples for Aim2 

Sr No Title Area Intensity Min Max Pixels Pixel - Bckgrd phospho:total Stats B6 Normalized STATS

1 PDTC - p-p65 112 92.366 79 118 10344.99 1475.488 982.4994451 2023.342 0.485582 1

2 PDTC - p-p65 112 112.589 80 162 12609.97 3740.464 2432.703055 1.202319 0.448867

3 PDTC - p-p65 112 116.321 81 181 13027.95 4158.448 2654.824953 1.312099 0.259154

4 PDTC - p-p65 112 106.438 82 147 11921.06 3051.552 2060.38116 1.018306 1.13497

5 PDTC - p-p65 112 109.152 83 161 12225.02 3355.52 2169.164905 1.07207 0.157814

6 PDTC - p-p65 112 117.107 83 164 13115.98 4246.48 2659.753933 1.314535 0.091114

7 PDTC - p-p65 112 102.83 81 142 11516.96 2647.456 1313.088599 0.64897 0.553641

8 PDTC - p-p65 112 89.5 80 104 10024 1154.496 595.235492 0.294184 0.392024

9 PDTC - p-p65 112 86.536 80 103 9692.032 822.528 414.5958411 0.204906 0.196012

10 PDTC - p-p65 112 119.33 82 175 13364.96 4495.456 2157.902016 1.066504

11 PDTC - p-p65 112 95.723 79 119 10720.98 1851.472 965.641671 0.477251 0.509753

12 PDTC - p-p65 112 110.054 79 169 12326.05 3456.544 1732.600372 0.856306 0.400151

13 PDTC - p-p65 112 103.036 77 156 11540.03 2670.528 1510.141103 0.74636 0.200075

14 PDTC - p-p65 112 78.152 77 79 8753.024 -116.48 -82.76441281 -0.0409

15 PDTC - p-p65 112 78.714 77 80 8815.968 8869.504

16 PDTC - p-p65 112 79.67 78 82 8923.04

Sr No Title Area Intensity Min Max Pixels Pixel - Bckgrd

1 PDTC - t-p65 4320 124.737 68 187 538863.8 1.501769805

2 PDTC - t-p65 4320 127.711 83 199 551711.5 1.537575247

3 PDTC - t-p65 4320 130.103 83 193 562045 1.566373706

4 PDTC - t-p65 4320 123.017 83 193 531433.4 1.481061883

5 PDTC - t-p65 4320 128.487 83 198 555063.8 1.546917891

6 PDTC - t-p65 4320 132.611 82 203 572879.5 1.596568745

7 PDTC - t-p65 4320 167.466 86 215 723453.1 2.016205153

8 PDTC - t-p65 4320 161.1 70 214 695952 1.939561763

9 PDTC - t-p65 4320 164.785 86 223 711871.2 1.983927281

10 PDTC - t-p65 4320 173.035 90 215 747511.2 2.08325307

11 PDTC - t-p65 4320 159.255 85 215 687981.6 1.917348904

12 PDTC - t-p65 4320 165.705 86 215 715845.6 1.995003612

13 PDTC - t-p65 4320 146.883 85 209 634534.6 1.76839634

14 PDTC - t-p65 4320 116.896 80 175 504990.7 1.407368168

15 PDTC - t-p65 4320 83.149 76 90 359203.7 358819.2

16 PDTC - t-p65 4320 82.604 70 93 356849.3

17 PDTC - t-p65 4320 83.427 77 92 360404.6
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WESTERN DATA FOR FUSION PROTEIN 

Table D.26:  Raw data for quantification of STAT-3 western blots by Image J for 

the gp130 fusion protein treated samples for Aim2 

 

  

Sr. No title Area Mean min Max Pixels Pixel - Bkgrd phospho:total Stats B6 Normalized STATS

1 p-STAT3_FP 153 80.085 76 80 100 12253.01 33.507 38.5706738 56.51494 0.682486343 1

2 p-STAT3_FP 153 80.307 76 80 100 12286.97 67.473 88.1275396 27.46067 1.559367165 0.485901

3 p-STAT3_FP 153 80.137 76 80 100 12260.96 41.463 42.8466025 15.85442 0.758146493 0.280535

4 p-STAT3_FP 153 85.307 78 97 100 13051.97 832.473 858.81899 2909.96 15.1963182 51.49011

5 p-STAT3_FP 153 93.085 81 124 100 14242.01 2022.507 4102.73122 1784.192 72.59551764 31.57027

6 p-STAT3_FP 153 98.693 80 135 100 15100.03 2880.531 3768.33092 1030.104 66.67849274 18.22711

7 p-STAT3_FP 153 180.046 89 212 100 27547.04 15327.54 17147.5846 17248.22 303.4168497 305.1975

8 p-STAT3_FP 153 175.229 91 213 100 26810.04 14590.539 13383.4459 2890.111 236.8125348 51.13888

9 p-STAT3_FP 153 185.111 92 214 100 28321.98 16102.485 18170.4042 1445.055 321.5150655 25.56944

10 p-STAT3_FP 153 176.451 95 214 100 26997 14777.505 20291.44 359.0456

11 p-STAT3_FP 153 182.444 91 217 100 27913.93 15694.434 13098.7798 20277.71 231.7755291 358.8026

12 p-STAT3_FP 153 160.778 86 214 100 24599.03 12379.536 15066.788 13049.81 266.5983264 230.9091

13 p-STAT3_FP 153 161.641 86 213 100 24731.07 12511.575 39803.9481 6524.906 704.308437 115.4545

14 p-STAT3_FP 153 146.693 83 206 100 22444.03 10224.531 13141.3162 232.5281872

15 p-STAT3_FP 153 80.085 78 83 100 12253.01 12219.498

16 p-STAT3_FP 153 79.647 77 84 100 12185.99

1 t-STAT3 0.017 149.09 90 211 0 2.53453 0.868717

2 03-26-2014 10;52;20PM.tif0.017 143.026 94 212 0 2.431442 0.765629

3 03-26-2014 10;52;20PM.tif0.017 154.913 97 210 0 2.633521 0.967708

4 03-26-2014 10;52;20PM.tif0.017 155.008 89 210 0 2.635136 0.969323

5 03-26-2014 10;52;20PM.tif0.017 126.987 94 173 0 2.158779 0.492966

6 03-26-2014 10;52;20PM.tif0.017 142.954 94 201 0 2.430218 0.764405

7 03-26-2014 10;52;20PM.tif0.017 150.569 98 212 0 2.559673 0.89386

8 03-26-2014 10;52;20PM.tif0.017 162.118 98 214 0 2.756006 1.090193

9 03-26-2014 10;52;20PM.tif0.017 150.118 98 204 0 2.552006 0.886193

10 03-26-2014 10;52;20PM.tif0.017 140.828 97 206 0 2.394076 0.728263

11 03-26-2014 10;52;20PM.tif0.017 168.469 100 213 0 2.863973 1.19816

12 03-26-2014 10;52;20PM.tif0.017 146.321 96 209 0 2.487457 0.821644

13 03-26-2014 10;52;20PM.tif0.017 116.479 94 169 0 1.980143 0.31433

14 03-26-2014 10;52;20PM.tif0.017 97.518 89 106 0 1.657806 0.7780447

15 03-26-2014 10;52;20PM.tif0.017 98.777 92 104 0 1.679209 1.665813

16 03-26-2014 10;52;20PM.tif0.017 97.672 91 104 0 1.660424
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Table D.27:  Raw data for quantification of mTOR western blots by Image J for the 

gp130 fusion protein treated samples for Aim2 

 

 

 

Serial No Title Area Intensity Min Max Pixels Pixels - Bckgrd Average Phospho: total Average B6 Normalized Stats

1 p_mTOR_FP_1.tif0.01 154.406 120 202 1.54 0.300 0.164273 0.395 0.189933 2.079 1

2 p_mTOR_FP_1.tif0.01 135.91 120 193 1.36 0.115 0.098 0.518 0.936417

3 p_mTOR_FP_1.tif0.01 132.188 119 181 1.32 0.078 0.076 0.402 0.540641

4 p_mTOR_FP_1.tif0.01 152.269 120 193 1.52 0.279 0.170 0.897 0.399148

5 p_mTOR_FP_1.tif0.01 132.705 120 171 1.33 0.083 0.042 0.222 0.436645

6 p_mTOR_FP_1.tif0.01 127.205 117 157 1.27 0.028 0.015 0.079 0.252097

7 p_mTOR_FP_1.tif0.01 143.291 117 194 1.43 0.189 0.103 0.544

8 p_mTOR_FP_1.tif0.01 156.389 123 199 1.56 0.320 0.165 0.871 0.750031

9 p_mTOR_FP_1.tif0.01 150.927 116 199 1.51 0.265 0.129 0.679 0.169715

10 p_mTOR_FP_1.tif0.01 158.103 120 199 1.58 0.337 0.172 0.906 0.084858

11 p_mTOR_FP_1.tif0.01 147.269 121 196 1.47 0.229 0.123 0.648

12 p_mTOR_FP_1.tif0.01 163.791 122 199 1.64 0.394 0.220 1.160 1.251784

13 p_mTOR_FP_1.tif0.01 171.098 121 198 1.71 0.467 0.243 1.280 0.522578

14 p_mTOR_FP_1.tif0.01 157.603 120 190 1.58 0.332 0.364 1.919 0.261289

15 p_mTOR_FP_1.tif0.01 123.654 118 128 1.24 1.244

16 p_mTOR_FP_1.tif0.01 124.568 121 128 1.25

17 p_mTOR_FP_1.tif0.01 125 120 138 1.25

Serial No Title Area Intensity Min Max Pixels Pixels - Bckgrd

1 tmTOR.tif 0.019 107.617 59 187 2.044723 0.759632667

2 tmTOR.tif 0.019 129.122 63 198 2.453318 1.168227667

3 tmTOR.tif 0.019 121.218 71 194 2.303142 1.018051667

4 tmTOR.tif 0.019 153.745 78 204 2.921155 1.636064667

5 tmTOR.tif 0.019 171.439 98 209 3.257341 1.972250667

6 tmTOR.tif 0.019 165.372 93 203 3.142068 1.856977667

7 tmTOR.tif 0.019 163.852 89 206 3.113188 1.828097667

8 tmTOR.tif 0.019 169.381 88 210 3.218239 1.933148667

9 tmTOR.tif 0.019 175.801 93 214 3.340219 2.055128667

10 tmTOR.tif 0.019 170.716 90 212 3.243604 1.958513667

11 tmTOR.tif 0.019 165.451 93 210 3.143569 1.858478667

12 tmTOR.tif 0.019 161.707 94 214 3.072433 1.787342667

13 tmTOR.tif 0.019 168.684 95 215 3.204996 1.919905667

14 tmTOR.tif 0.019 115.573 66 203 2.195887 0.910796667

15 tmTOR.tif 0.019 68.119 59 81 1.294261 1.285090333

16 tmTOR.tif 0.019 66.647 58 75 1.266293

17 tmTOR.tif 0.019 68.143 59 78 1.294717
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Table D.28:  Raw data for quantification of S6 western blots by Image J for the 

gp130 fusion protein treated samples for Aim2 

 

 

Serial No Title Area Intensity Min Max Pixels Pixels - BckgrdPhospho: totalAverage B6 Normalized

18 p-S6_FP 0.029 128.4 62 197 3.724 1.963 1.228 0.928 1.323

19 fusion protein_1.tif0.029 111.883 69 181 3.245 1.484 0.568 0.612

20 fusion protein_1.tif0.029 137.214 71 200 3.979 2.218 0.988 1.065

21 fusion protein_1.tif0.029 173.474 88 205 5.031 3.270 1.177 1.268

22 fusion protein_1.tif0.029 179.424 95 205 5.203 3.442 1.204 1.297

23 fusion protein_1.tif0.029 190.517 115 207 5.525 3.764 1.334 1.438

24 fusion protein_1.tif0.029 153.655 79 199 4.456 2.695 0.816 0.880

25 fusion protein_1.tif0.029 113.785 72 183 3.300 1.539 0.529 0.570

26 fusion protein_1.tif0.029 82.827 65 120 2.402 0.641 0.211 0.227

27 fusion protein_1.tif0.029 100.183 68 164 2.905 1.144 0.363 0.391

28 fusion protein_1.tif0.029 93.889 70 140 2.723 0.962 0.295 0.317

29 fusion protein_1.tif0.029 139.809 75 194 4.054 2.293 0.642 0.692

30 fusion protein_1.tif0.029 147.912 78 190 4.289 2.528 0.769 0.829

31 fusion protein_1.tif0.029 75.709 55 106 2.196 0.435 0.195 0.210

32 fusion protein_1.tif0.029 57.674 51 68 1.673 1.761

33 fusion protein_1.tif0.029 63.774 57 82 1.849

Serial No Title Area Intensity Min Max Pixels Pixels - Bckgrd

34 t-S6 0.035 131.326 82 207 4.596 1.599

35 fusion protein_1.tif0.035 160.243 90 220 5.609 2.611

36 fusion protein_1.tif0.035 149.78 89 211 5.242 2.245

37 fusion protein_1.tif0.035 165.05 89 212 5.777 2.779

38 fusion protein_1.tif0.035 167.362 91 214 5.858 2.860

39 fusion protein_1.tif0.035 166.246 92 215 5.819 2.821

40 fusion protein_1.tif0.035 179.964 91 214 6.299 3.301

41 fusion protein_1.tif0.035 168.781 91 212 5.907 2.910

42 fusion protein_1.tif0.035 172.553 94 214 6.039 3.042

43 fusion protein_1.tif0.035 175.839 96 214 6.154 3.157

44 fusion protein_1.tif0.035 178.914 99 215 6.262 3.264

45 fusion protein_1.tif0.035 187.678 100 212 6.569 3.571

46 fusion protein_1.tif0.035 179.555 97 209 6.284 3.287

47 fusion protein_1.tif0.035 149.399 81 197 5.229 2.231

48 fusion protein_1.tif0.035 84.256 75 114 2.949 2.998

49 fusion protein_1.tif0.035 85.7 77 93 3.000

50 fusion protein_1.tif0.035 86.99 79 98 3.045
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Table D.29:  Raw data for quantification of Akt western blots by Image J for the 

gp130 fusion protein treated samples for Aim2 

 

 

Serial No Title Area Intensity Min Max Pixels Pixels - BckgrdPhospho: totalAverage B6 Normalized

1 fusion protein_1.tif0.023 114.527 59 190 2.634121 1.246945 0.423921 0.584959 0.724702192

2 fusion protein_1.tif0.023 156.276 88 198 3.594348 3.594348 0.670316 1.145919288

3 fusion protein_1.tif0.023 149.151 85 197 3.430473 3.430473 0.66064 1.12937852

4 fusion protein_1.tif0.023 153.363 89 197 3.527349 3.527349 0.57799 0.988085582

5 fusion protein_1.tif0.023 144.347 88 193 3.319981 3.319981 0.540666 0.924279771

6 fusion protein_1.tif0.023 142.941 81 192 3.287643 3.287643 0.533376 0.911817349

7 fusion protein_1.tif0.023 100.931 69 145 2.321413 2.321413 0.37161 0.635275847

8 fusion protein_1.tif0.023 70.027 60 80 1.610621 1.610621 0.257179 0.439653288

9 fusion protein_1.tif0.023 66.031 60 72 1.518713 1.518713 0.238269 0.407325448

10 fusion protein_1.tif0.023 68.943 58 79 1.585689 1.585689 0.245719 0.420062658

11 fusion protein_1.tif0.023 67.588 60 76 1.554524 1.554524 0.247107 0.422435001

12 fusion protein_1.tif0.023 154.912 84 183 3.562976 3.562976 0.558663 0.955046958

13 fusion protein_1.tif0.023 102.625 70 149 2.360375 2.360375 0.366114 0.625878948

14 fusion protein_1.tif0.023 72.065 54 96 1.657495 1.657495 0.323628 0.553249532

15 fusion protein_1.tif0.023 56.973 48 66 1.310379 1.387176 0.43951

16 fusion protein_1.tif0.023 63.651 57 70 1.463973

Serial No Title Area Intensity Min Max Pixels Pixels - Bckgrd

1 t-Akt_02-03-2014 09;51;21PM.tif0.033 184.777 116 212 6.10 2.94

2 t-Akt_02-03-2014 09;51;21PM.tif0.033 162.49 102 209 5.36 5.36

3 t-Akt_02-03-2014 09;51;21PM.tif0.033 157.353 101 207 5.19 5.19

4 t-Akt_02-03-2014 09;51;21PM.tif0.033 184.933 120 208 6.10 6.10

5 t-Akt_02-03-2014 09;51;21PM.tif0.033 186.077 132 204 6.14 6.14

6 t-Akt_02-03-2014 09;51;21PM.tif0.033 186.783 118 206 6.16 6.16

7 t-Akt_02-03-2014 09;51;21PM.tif0.033 189.3 116 207 6.25 6.25

8 t-Akt_02-03-2014 09;51;21PM.tif0.033 189.777 144 209 6.26 6.26

9 t-Akt_02-03-2014 09;51;21PM.tif0.033 193.15 129 206 6.37 6.37

10 t-Akt_02-03-2014 09;51;21PM.tif0.033 195.553 149 207 6.45 6.45

11 t-Akt_02-03-2014 09;51;21PM.tif0.033 190.633 114 210 6.29 6.29

12 t-Akt_02-03-2014 09;51;21PM.tif0.033 193.263 113 210 6.38 6.38

13 t-Akt_02-03-2014 09;51;21PM.tif0.033 195.367 145 215 6.45 6.45

14 t-Akt_02-03-2014 09;51;21PM.tif0.033 155.2 89 211 5.12 5.12

15 t-Akt_02-03-2014 09;51;21PM.tif0.033 95.277 89 103 3.14 3.16

16 t-Akt_02-03-2014 09;51;21PM.tif0.033 96.007 91 102 3.17
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Table D.30:  Raw data for quantification of p-65 western blots by Image J for the 

gp130 fusion protein treated samples for Aim2 

 

1 p-p65 0.013 115.212 84 199 1.498 0.274 1.275 2.475 0.515 1.000

2 p-p65 0.013 162.896 98 212 2.118 0.894 3.591 1.451 0.469

3 p-p65 0.013 156.084 95 209 2.029 0.805 2.560 1.034 0.271

4 p-p65 0.013 121.879 91 201 1.584 0.361 0.486 0.250 0.196 0.101

5 p-p65 0.013 104.512 85 177 1.359 0.135 0.154 0.062 0.083

6 p-p65 0.013 102.451 86 141 1.332 0.108 0.110 0.045 0.048

7 p-p65 0.013 99.582 85 141 1.295 0.071 0.072 0.179 0.029 0.072

8 p-p65 0.013 97.343 88 135 1.265 0.042 0.093 0.037 0.090

9 p-p65 0.013 94.939 87 108 1.234 0.010 0.041 0.016 0.045

10 p-p65 0.013 108.357 91 175 1.409 0.185 0.510 0.206

11 p-p65 0.013 112.556 90 176 1.463 0.239 0.442 1.500 0.178 0.606

12 p-p65 0.013 127.03 92 203 1.651 0.428 1.758 0.710 0.513

13 p-p65 0.013 112.993 90 183 1.469 0.245 0.610 0.246 0.256

14 p-p65 0.013 103.364 91 163 1.344 0.120 3.189 1.288

15 p-p65 0.013 94.902 89 104 1.234 1.224 0.665

16 p-p65 0.013 93.875 89 101 1.220

17 p-p65 0.013 93.633 86 101 1.217

1 t-p65 0.016 128.505 111 193 2.05608 0.214832

2 t-p65 0.016 130.637 109 196 2.090192 0.248944

3 t-p65 0.016 134.739 114 179 2.155824 0.314576

4 t-p65 0.016 161.503 123 205 2.584048 0.7428

5 t-p65 0.016 169.951 122 206 2.719216 0.877968

6 t-p65 0.016 176.349 131 210 2.821584 0.980336

7 t-p65 0.016 176.566 125 209 2.825056 0.983808

8 t-p65 0.016 143.234 113 191 2.291744 0.450496

9 t-p65 0.016 131.162 115 172 2.098592 0.257344

10 t-p65 0.016 137.755 115 182 2.20408 0.362832

11 t-p65 0.016 148.962 116 211 2.383392 0.542144

12 t-p65 0.016 130.28 110 186 2.08448 0.243232

13 t-p65 0.016 140.19 112 208 2.24304 0.401792

14 t-p65 0.016 117.429 110 136 1.878864 0.037616

15 t-p65 0.016 114.753 110 120 1.836048 1.841248

16 t-p65 0.016 114.753 110 120 1.836048

17 t-p65 0.016 115.728 107 123 1.851648

Sr.No Blot Area Intensity Min Max Pixel Pixel - Bckgrd

Normalized 

to B6
Statistics

Normalized to 

t-p65
Pixel - BckgrdPixelSr.No Blot Area Intensity AverageMin Max
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Table D.31:  Raw data for quantification of MMP-2 western blots by Image J for the 

gp130 fusion protein treated samples for Aim2 

 

Serial No Title Area Intensity Min Max Pixels Pixels - Bckgrd Average B6 Normalized Stats

1 MMP2_fusion protein0.023 117.19 63 190 2.69537 1.220694333 1.764146 0.69194632 1

2 MMP2_fusion protein0.023 155.571 84 200 3.578133 2.103457333 1.192337444 0.269519

3 MMP2_fusion protein0.023 149.694 84 198 3.442962 1.968286333 1.115716235 0.155607

4 MMP2_fusion protein0.023 153.469 89 200 3.529787 2.055111333 1.164932683 1.078303

5 MMP2_fusion protein0.023 144.092 81 195 3.314116 1.839440333 1.04268033 0.075417

6 MMP2_fusion protein0.023 142.912 82 194 3.286976 1.812300333 1.027296116 0.043542

7 MMP2_fusion protein0.023 102.202 71 144 2.350646 0.875970333 0.496540725 0.168717

8 MMP2_fusion protein0.023 70.269 60 80 1.616187 0.141511333 0.080215205 0.219882

9 MMP2_fusion protein0.023 66.076 58 76 1.519748 0.045072333 0.025549095 0.109941

10 MMP2_fusion protein0.023 69.682 59 79 1.602686 0.128010333 0.07256221

11 MMP2_fusion protein0.023 69.945 58 93 1.608735 0.134059333 0.075991065 0.455121

12 MMP2_fusion protein0.023 153.971 73 183 3.541333 2.066657333 1.171477493 0.521388

13 MMP2_fusion protein0.023 103.394 71 148 2.378062 0.903386333 0.512081389 0.260694

14 MMP2_fusion protein0.023 68.79 51 95 1.58217 0.107494333 0.060932787

15 MMP2_fusion protein0.023 61.894 51 76 1.423562 1.474675667

16 MMP2_fusion protein0.023 64.296 57 72 1.478808

17 MMP2_fusion protein0.023 66.159 60 71 1.521657
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RAW DATA FOR AIM 3: 

Table D.32: Real time PCR data for the gene Haptaglobin for samples treated with 

the Antibiotics 

 

Haptaglobin GAPDH

Treatment Ct Ct Dct DDct fold changeNormalized Dct DDct Fold change Norm

105 16.67 22.545 -5.875 0.092 0.938 0.931

106 16.955 23.01 -6.055 -0.088 1.063 1.055 C57BL/6 -5.967 1.78E-16 1.007547 1.000

108 16.47 22.38 -5.91 0.057 0.961 0.954 (n=6) 0.19617 0.19617 0.140537 0.139484

989 16.365 22.62 -6.255 -0.288 1.221 1.212 0.08773 0.08773 0.06285 0.062379

992 16.655 22.395 -5.74 0.227 0.854 0.848

Apc Min -6.2125 -0.2455 4.73532 4.700

435 14.275 22.825 -8.55 -2.583 5.992 5.947 (n=6) 4.198783 4.198783 5.05053 5.0127

436 12.965 22.43 -9.465 -3.498 11.298 11.213 2.099391 2.099391 2.525265 2.50635 0.03511

438 22.875 23.035 -0.16 5.807 0.018 0.018

694 20.98 27.655 -6.675 -0.708 1.634 1.621 Apc Min -8.736 -2.769 9.153 9.084

(n=4) 1.206444 1.206444 8.886647 8.820084

Polymyxin 0.603222 0.603222 4.443324 4.410042 0.36089

417 14.23 22.805 -8.575 -2.608 6.097 6.051 Apc Min -7.03429 -1.06729 2.803172 2.782175

506 18.26 28.71 -10.45 -4.483 22.362 22.195 (n=7) 1.465064 1.465064 1.621404 1.609259

515 14.44 22.715 -8.275 -2.308 4.952 4.915 Nor/Amp 0.553742 0.553742 0.612833 0.608243 0.10273

522 14.975 22.62 -7.645 -1.678 3.200 3.176 0.07533

0.42062

696 16.955 23.15 -6.195 -0.228 1.171 1.162

702 15.255 22.675 -7.42 -1.453 2.738 2.717

705 14.74 22.93 -8.19 -2.223 4.669 4.634

826 22.975 27.045 -4.07 1.897 0.269 0.266

827 15.19 22.855 -7.665 -1.698 3.245 3.220

832 15.065 22.62 -7.555 -1.588 3.006 2.984

833 14.625 22.77 -8.145 -2.178 4.525 4.491
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Table D.33: Real time PCR data for the gene PEPCK for samples treated with the 

Antibiotics 

 

Table D.34: Real time PCR data for the gene PFK for samples treated with the 

Antibiotics 

 

PEPCK GAPDH

Treatment Ct Ct Dct DDct fold changeNormalized Dct DDct Fold change Norm

105 18.82 23.5 -4.68 0.734 0.601 0.564

106 18.39 23.95 -5.56 -0.146 1.107 1.037 C57BL/6 -5.41375 0 1.067024 1

108 18.35 23.63 -5.28 0.134 0.911 0.854 (n=6) 0.604943 0.604943 0.44003 0.41239

989 17.755 23.89 -6.135 -0.721 1.649 1.545 0.302472 0.302472 0.220015 0.206195 0.047850725

992

Apc Min -2.88125 2.533 0.401882 0.376638

435 19 23.44 -4.44 0.974 0.509 0.477 (n=4) 3.153996 3.153996 0.307029 0.287743

436 18.05 23.025 -4.975 0.439 0.738 0.691 1.576998 1.576998 0.153515 0.143872 0.325187831

438 26.32 24.515 1.805 7.219 0.007 0.006

694 24.84 28.755 -3.915 1.499 0.354 0.332 Apc Min -6.035 -0.621 2.918 2.734

(n=4) 1.967867 1.967867 3.812257 3.572793

Poly 0.983933 0.983933 1.906128 1.786397 0.184063746

417 19.475 24.66 -5.185 0.229 0.853 0.800 Apc Min -4.91667 0.497083 0.748376 0.701367

506 20.915 29.2 -8.285 -2.871 7.317 6.857 (n=4) 0.611971 0.611971 0.27461 0.25736

515 18.67 23.305 -4.635 0.779 0.583 0.546 Nor/Amp 0.231303 0.231303 0.103793 0.097273 0.381227523

696

702 17.915 23.255 -5.34 0.074 0.950 0.890

705 19.3 23.515 -4.215 1.199 0.436 0.408

826 18.37 23.565 -5.195 0.219 0.859 0.805

PFK GAPDH

Treatment Ct Ct Dct DDct fold changeNormalized Dct DDct Fold change Norm

105 28.97 23.5 5.47 0.169 0.890 0.836

106 29.415 23.95 5.465 0.164 0.893 0.839 C57BL/6 5.30125 0.000 1.064 1

108 29.41 23.63 5.78 0.479 0.718 0.675 (n=6) 0.560541 0.560541 0.467923 0.439918

989 28.38 23.89 4.49 -0.811 1.755 1.650 0.280271 0.280271 0.233962 0.219959

Apc Min 3.7925 -1.509 3.38753 3.185

435 26.38 23.44 2.94 -2.361 5.138 4.831 (n=4) 1.01399 1.01399 2.118394 1.991606

436 25.92 23.025 2.895 -2.406 5.301 4.984 0.506995 0.506995 1.059197 0.995803

438 29.285 24.515 4.77 -0.531 1.445 1.359

694 33.32 28.755 4.565 -0.736 1.666 1.566 Apc Min 2.072 -3.230 10.960 10.304

(n=3) 1.020592 1.020592 7.003252 6.5841

Poly 0.510296 0.510296 3.501626 3.29205

417 25.76 24.66 1.1 -4.201 18.395 17.294 Apc Min 4.561667 -0.73958 1.950042 1.83333

506 31.18 29.2 1.98 -3.321 9.995 9.397 (n=3) 0.949452 0.949452 1.394653 1.311181

515 26.44 23.305 3.135 -2.166 4.489 4.220 Nor/Amp 0.358859 0.358859 0.527129 0.49558

522

696

702 28.275 23.255 5.02 -0.281 1.215 1.143

705 28.71 23.515 5.195 -0.106 1.076 1.012

833 27.035 23.565 3.47 -1.831 3.558 3.345
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WESTERN DATA FOR AIM 3 

Table D.35:  Raw data for quantification of STAT-3 western blots by Image J for 

for samples treated with the Antibiotics 

 

 

Sr. No Title Area Intensity Min Max Pixels Pixel - BgkgrdPhospho:totalAverageB6 Normalized STATS

1 p-STAT3-Poly 0.028 112.942 106 128 3.16 0.02 0.02 0.23 0.067578 1

2 03-28-2014 10;39;49PM.tif0.028 112.331 104 118 3.15 0.00 0.00 -0.00574 1.935644

3 03-28-2014 10;39;49PM.tif0.028 112.642 105 120 3.15 0.01 0.01 0.035044

4 03-28-2014 10;39;49PM.tif0.028 135.104 110 192 3.78 0.64 0.89 3.903117

5 03-28-2014 10;39;49PM.tif0.028 117.585 108 166 3.29 0.15 0.27 1.164279 2.311777

6 03-28-2014 10;39;49PM.tif0.028 133.773 108 194 3.75 0.60 0.80 3.489762 1.163041

7 03-28-2014 10;39;49PM.tif0.028 126.042 110 183 3.53 0.38 0.52 2.281292

8 03-28-2014 10;39;49PM.tif0.028 164.923 109 212 4.62 1.47 1.90 8.318976 5.533622

9 03-28-2014 10;39;49PM.tif0.028 161.462 111 213 4.52 1.37 1.55 6.805359 2.731743

10 03-28-2014 10;39;49PM.tif0.028 159.119 113 208 4.46 1.31 1.29 5.649127

11 03-28-2014 10;39;49PM.tif0.028 166.081 116 209 4.65 1.50 1.34 5.871738

12 03-28-2014 10;39;49PM.tif0.028 129.715 108 181 3.63 0.49 0.23 1.022912

13 03-28-2014 10;39;49PM.tif0.028 110.612 106 115 3.10 3.15 2.08

14 03-28-2014 10;39;49PM.tif0.028 112.119 107 117 3.14

15 03-28-2014 10;39;49PM.tif0.028 114.404 108 123 3.20

Sr. No Title Area Intensity Min Max Pixels Pixel - Bgkgrd

1 t-STAT3 - Poly 0.013 195.125 129 215 2.54 1.02

2 t-STAT3 - Poly 0.013 194.256 122 220 2.53 1.01

3 t-STAT3 - Poly 0.013 187.414 124 216 2.44 0.92

4 t-STAT3 - Poly 0.013 171.357 115 213 2.23 0.71

5 t-STAT3 - Poly 0.013 158.613 114 214 2.06 0.55

6 t-STAT3 - Poly 0.013 174.266 122 215 2.27 0.75

7 t-STAT3 - Poly 0.013 172.933 116 217 2.25 0.73

8 t-STAT3 - Poly 0.013 176.017 120 215 2.29 0.77

9 t-STAT3 - Poly 0.013 184.475 121 217 2.40 0.88

10 t-STAT3 - Poly 0.013 194.492 138 225 2.53 1.02

11 t-STAT3 - Poly 0.013 202.721 136 216 2.64 1.12

12 t-STAT3 - Poly 0.013 192.195 119 213 2.50 0.99

13 t-STAT3 - Poly 0.013 113.502 107 133 1.48 1.51

14 t-STAT3 - Poly 0.013 120.114 111 138 1.56

15 t-STAT3 - Poly 0.013 115.616 110 123 1.50
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WESTERN DATA FOR NOR/AMP 

 

Table D.36:  Raw data for quantification of p-65 western blots by Image J for for 

samples treated with the Antibiotics 

 

 

Sr. No Title Area Intensity Min Max Pixels Pixel - BgkgrdPhospho:total Average B6 Normalized STATS

1 nor_Amp - pNFkB 7380 113.836 78 215 840109.68 224942.40 219823.52 488974.11 0.449560647 1

2 p-NFkB Blots.jpg 7380 150.643 72 231 1111745.34 496578.06 490694.95 1.0035193 0.395294

3 p-NFkB Blots.jpg 7380 155.731 80 225 1149294.78 534127.50 578659.18 1.18341477

4 p-NFkB Blots.jpg 7380 147.887 80 221 1091406.06 476238.78 666718.78 1.363505283

5 p-NFkB Blots.jpg 7380 83.962 76 100 619639.56 4472.28 8151.72 0.016671064 0.570698

6 p-NFkB Blots.jpg 7380 133.825 78 219 987628.50 372461.22 495215.59 1.012764444 0.507397

7 p-NFkB Blots.jpg 7380 116.591 78 216 860441.58 245274.30 333801.75 0.682657314

8 p-NFkB Blots.jpg 7380 127.761 38 216 942876.18 327708.90 422914.40 0.864901427 0.490562

9 p-NFkB Blots.jpg 7380 98.473 77 170 726730.74 111563.46 126083.72 0.257853579 0.283625

10 p-NFkB Blots.jpg 7380 118.999 79 214 878212.62 263045.34 259143.33 0.529973527

11 p-NFkB Blots.jpg 7380 95.697 78 172 706243.86 91076.58 81170.94 0.166002529

12 p-NFkB Blots.jpg 7380 124.746 79 215 920625.48 305458.20 310048.05 0.634078661

13 p-NFkB Blots.jpg 7380 82.769 74 100 610835.22 615167.28 406496.77

14 p-NFkB Blots.jpg 7380 83.774 67 117 618252.12

15 p-NFkB Blots.jpg 7380 83.525 77 94 616414.50

Sr. No Title Area Intensity Min Max Pixels Pixel - Bgkgrd

1 nor_Amp03-29-2014 10;50;20PM.tif0.013 195.125 129 215 2.536625 1.02

2 nor_Amp03-29-2014 10;50;20PM.tif0.013 194.256 122 220 2.525328 1.01

3 nor_Amp03-29-2014 10;50;20PM.tif0.013 187.414 124 216 2.436382 0.92

4 nor_Amp03-29-2014 10;50;20PM.tif0.013 171.357 115 213 2.227641 0.71

5 nor_Amp03-29-2014 10;50;20PM.tif0.013 158.613 114 214 2.061969 0.55

6 nor_Amp03-29-2014 10;50;20PM.tif0.013 174.266 122 215 2.265458 0.75

7 nor_Amp03-29-2014 10;50;20PM.tif0.013 172.933 116 217 2.248129 0.73

8 nor_Amp03-29-2014 10;50;20PM.tif0.013 176.017 120 215 2.288221 0.77

9 nor_Amp03-29-2014 10;50;20PM.tif0.013 184.475 121 217 2.398175 0.88

10 nor_Amp03-29-2014 10;50;20PM.tif0.013 194.492 138 225 2.528396 1.02

11 nor_Amp03-29-2014 10;50;20PM.tif0.013 202.721 136 216 2.635373 1.12

12 nor_Amp03-29-2014 10;50;20PM.tif0.013 192.195 119 213 2.498535 0.99

13 nor_Amp03-29-2014 10;50;20PM.tif0.013 113.502 107 133 1.475526 1.51

14 nor_Amp03-29-2014 10;50;20PM.tif0.013 120.114 111 138 1.561482

15 nor_Amp03-29-2014 10;50;20PM.tif0.013 115.616 110 123 1.503008
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Table D.37:  Raw data for quantification of STAT-3 western blots by Image J for 

for samples treated with the Antibiotics 

 

Sr. No Title Area Mean Min Max Pixels Pixel - Bgkgrd total:GAPDH AverageB6 Normalized STATS

1 03-13-2014 09;51;38PM.tif0.053 174.742 109 223 9.261326 3.397052667 3.319748 4.146323 0.800649 1

2 03-13-2014 09;51;38PM.tif0.053 193.513 130 224 10.25619 4.391915667 4.339883 1.046682 0.140721

3 03-13-2014 09;51;38PM.tif0.053 184.471 125 219 9.776963 3.912689667 4.238901 1.022328 0.070361

4 03-13-2014 09;51;38PM.tif0.053 173.812 115 217 9.212036 3.347762667 4.686759 1.130341

5 03-13-2014 09;51;38PM.tif0.053 117.46 108 144 6.22538 0.361106667 0.658197 0.158742 0.104871

6 03-13-2014 09;51;38PM.tif0.053 112.233 104 121 5.948349 0.084075667 0.111785 0.02696 0.069102

7 03-13-2014 09;51;38PM.tif0.053 118.057 104 134 6.257021 0.392747667 0.534503 0.12891 0.039896

8 03-13-2014 09;51;38PM.tif0.053 119.403 103 142 6.328359 0.464085667 0.598911 0.144444 0.013729

9 03-13-2014 09;51;38PM.tif0.053 109.423 98 132 5.799419 -0.064854333 -0.0733 -0.01768 0.094495

10 03-13-2014 09;51;38PM.tif0.053 111.096 97 153 5.888088 0.023814667 0.023461 0.005658 0.042259

11 03-13-2014 09;51;38PM.tif0.053 115.037 97 185 6.096961 0.232687667 0.20738 0.050015

12 03-13-2014 09;51;38PM.tif0.053 101.876 94 116 5.399428 -0.464845333 -0.47183 -0.11379

13 03-13-2014 09;51;38PM.tif0.053 103.722 91 112 5.497266 5.864273333 3.875057 0.934577

14 03-13-2014 09;51;38PM.tif0.053 115.233 108 124 6.107349

15 03-13-2014 09;51;38PM.tif0.053 112.985 104 125 5.988205

Sr. No Title Area Mean Min Max Pixels Pixel - Bgkgrd

1 nor_Amp03-29-2014 10;50;20PM.tif0.013 195.125 129 215 2.536625 1.023286333

2 nor_Amp03-29-2014 10;50;20PM.tif0.013 194.256 122 220 2.525328 1.011989333

3 nor_Amp03-29-2014 10;50;20PM.tif0.013 187.414 124 216 2.436382 0.923043333

4 nor_Amp03-29-2014 10;50;20PM.tif0.013 171.357 115 213 2.227641 0.714302333

5 nor_Amp03-29-2014 10;50;20PM.tif0.013 158.613 114 214 2.061969 0.548630333

6 nor_Amp03-29-2014 10;50;20PM.tif0.013 174.266 122 215 2.265458 0.752119333

7 nor_Amp03-29-2014 10;50;20PM.tif0.013 172.933 116 217 2.248129 0.734790333

8 nor_Amp03-29-2014 10;50;20PM.tif0.013 176.017 120 215 2.288221 0.774882333

9 nor_Amp03-29-2014 10;50;20PM.tif0.013 184.475 121 217 2.398175 0.884836333

10 nor_Amp03-29-2014 10;50;20PM.tif0.013 194.492 138 225 2.528396 1.015057333

11 nor_Amp03-29-2014 10;50;20PM.tif0.013 202.721 136 216 2.635373 1.122034333

12 nor_Amp03-29-2014 10;50;20PM.tif0.013 192.195 119 213 2.498535 0.985196333

13 nor_Amp03-29-2014 10;50;20PM.tif0.013 113.502 107 133 1.475526 1.513338667

14 nor_Amp03-29-2014 10;50;20PM.tif0.013 120.114 111 138 1.561482

15 nor_Amp03-29-2014 10;50;20PM.tif0.013 115.616 110 123 1.503008
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Table D.38:  Raw data for quantification of Akt western blots by Image J for for 

samples treated with the Antibiotics in Aim 3 

 

Sr. No Title Area Mean Min Max Pixels Pixel - Bgkgrdtotal:GAPDH AverageB6 Normalized STATS

1 p-AKT -Nor_Amp0.025 130.065 108 210 3.251625 0.3548 0.346726 1.121776 0.309087 1

2 nor_Amp03-29-2014 10;50;20PM.tif0.025 169.382 114 216 4.23455 1.337725 1.321877 1.178378 0.462082

3 nor_Amp03-29-2014 10;50;20PM.tif0.025 168.072 119 215 4.2018 1.304975 1.413774 1.2603 0.231041

4 nor_Amp03-29-2014 10;50;20PM.tif0.025 156.009 116 212 3.900225 1.0034 1.404727 1.252235

5 nor_Amp03-29-2014 10;50;20PM.tif0.025 120.581 111 133 3.014525 0.1177 0.214534 0.191245 0.110068

6 nor_Amp03-29-2014 10;50;20PM.tif0.025 118.54 112 127 2.9635 0.066675 0.088649 0.079026 0.070947

7 nor_Amp03-29-2014 10;50;20PM.tif0.025 117.849 110 136 2.946225 0.0494 0.06723 0.059932 0.040961

8 nor_Amp03-29-2014 10;50;20PM.tif0.025 116.681 107 129 2.917025 0.0202 0.026068 0.023239 0.061541

9 nor_Amp03-29-2014 10;50;20PM.tif0.025 117.779 108 133 2.944475 0.04765 0.053852 0.048006 0.027826

10 nor_Amp03-29-2014 10;50;20PM.tif0.025 118.704 111 137 2.9676 0.070775 0.069725 0.062156 0.012444

11 nor_Amp03-29-2014 10;50;20PM.tif0.025 120.674 111 141 3.01685 0.120025 0.106971 0.095358

12 nor_Amp03-29-2014 10;50;20PM.tif0.025 119.363 108 138 2.984075 0.08725 0.088561 0.078947

13 nor_Amp03-29-2014 10;50;20PM.tif0.025 115.94 110 125 2.8985 2.896825 1.914195

14 nor_Amp03-29-2014 10;50;20PM.tif0.025 115.391 108 122 2.884775

15 nor_Amp03-29-2014 10;50;20PM.tif0.025 116.288 110 124 2.9072

Sr. No Title Area Mean Min Max Pixels Pixel - Bgkgrd

1 nor_Amp03-29-2014 10;50;20PM.tif0.013 195.125 129 215 2.536625 1.023286333

2 nor_Amp03-29-2014 10;50;20PM.tif0.013 194.256 122 220 2.525328 1.011989333

3 nor_Amp03-29-2014 10;50;20PM.tif0.013 187.414 124 216 2.436382 0.923043333

4 nor_Amp03-29-2014 10;50;20PM.tif0.013 171.357 115 213 2.227641 0.714302333

5 nor_Amp03-29-2014 10;50;20PM.tif0.013 158.613 114 214 2.061969 0.548630333

6 nor_Amp03-29-2014 10;50;20PM.tif0.013 174.266 122 215 2.265458 0.752119333

7 nor_Amp03-29-2014 10;50;20PM.tif0.013 172.933 116 217 2.248129 0.734790333

8 nor_Amp03-29-2014 10;50;20PM.tif0.013 176.017 120 215 2.288221 0.774882333

9 nor_Amp03-29-2014 10;50;20PM.tif0.013 184.475 121 217 2.398175 0.884836333

10 nor_Amp03-29-2014 10;50;20PM.tif0.013 194.492 138 225 2.528396 1.015057333

11 nor_Amp03-29-2014 10;50;20PM.tif0.013 202.721 136 216 2.635373 1.122034333

12 nor_Amp03-29-2014 10;50;20PM.tif0.013 192.195 119 213 2.498535 0.985196333

13 nor_Amp03-29-2014 10;50;20PM.tif0.013 113.502 107 133 1.475526 1.513338667

14 nor_Amp03-29-2014 10;50;20PM.tif0.013 120.114 111 138 1.561482

15 nor_Amp03-29-2014 10;50;20PM.tif0.013 115.616 110 123 1.503008
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Table D.39:  Raw data for quantification of mTOR western blots by Image J for for 

samples treated with the Antibiotics in Aim 3 

 

 

mTOR

Sr. No Title Area Mean Min Max Pixels Pixel - Bgkgrdtotal:GAPDH Average B6 Normalized STATS

1 p-mTOR 0.026 127.998 115 166 3.327948 0.145349 0.267841 0.170099 1.574617564 1

2 Nor_Amp03-30-2014 08;15;47PM.tif0.026 128.339 119 178 3.336814 0.154215 0.187445 1.101973541 0.441891

3 Nor_Amp03-30-2014 08;15;47PM.tif0.026 126.894 118 168 3.299244 0.116645 0.097184 0.571338729 0.220946

4 Nor_Amp03-30-2014 08;15;47PM.tif0.026 126.528 115 137 3.289728 0.107129 0.127927 0.752070166

5 Nor_Amp03-30-2014 08;15;47PM.tif0.026 166.92 124 210 4.33992 1.157321 1.174974 6.907582372 5.741512

6 Nor_Amp03-30-2014 08;15;47PM.tif0.026 144.821 118 195 3.765346 0.582747 0.522379 3.071027282 2.318887

7 Nor_Amp03-30-2014 08;15;47PM.tif0.026 154.715 122 212 4.02259 0.839991 1.232527 7.24592774 1.33881

8 Nor_Amp03-30-2014 08;15;47PM.tif0.026 131.939 118 180 3.430414 0.247815 0.374982 2.204488364 3.734892

9 Nor_Amp03-30-2014 08;15;47PM.tif0.026 149.609 117 202 3.889834 0.707235 0.784825 4.613927419 3.215765

10 Nor_Amp03-30-2014 08;15;47PM.tif0.026 172.266 125 208 4.478916 1.296317 1.452843 8.54114832 1.438134

11 Nor_Amp03-30-2014 08;15;47PM.tif0.026 154.306 119 209 4.011956 0.829357 0.589008 3.462733179

12 Nor_Amp03-30-2014 08;15;47PM.tif0.026 120.958 114 129 3.144908 -0.03769 -0.02515 -0.147835761

13 Nor_Amp03-30-2014 08;15;47PM.tif0.026 120.583 91 133 3.135158 3.182599 2.445803

14 Nor_Amp03-30-2014 08;15;47PM.tif0.026 122.859 114 133 3.194334

15 Nor_Amp03-30-2014 08;15;47PM.tif0.026 123.781 118 133 3.218306

Sr. No Title Area Mean Min Max Pixels Pixel - Bgkgrd

1 Nor_Amp03-30-2014 08;15;47PM.tif0.029 129.558 106 211 3.757182 0.542667

2 Nor_Amp03-30-2014 08;15;47PM.tif0.029 139.215 106 213 4.037235 0.82272

3 Nor_Amp03-30-2014 08;15;47PM.tif0.029 152.233 107 218 4.414757 1.200242

4 Nor_Amp03-30-2014 08;15;47PM.tif0.029 139.722 105 210 4.051938 0.837423

5 Nor_Amp03-30-2014 08;15;47PM.tif0.029 144.81 108 215 4.19949 0.984975

6 Nor_Amp03-30-2014 08;15;47PM.tif0.029 149.313 108 211 4.330077 1.115562

7 Nor_Amp03-30-2014 08;15;47PM.tif0.029 134.346 105 213 3.896034 0.681519

8 Nor_Amp03-30-2014 08;15;47PM.tif0.029 133.634 107 210 3.875386 0.660871

9 Nor_Amp03-30-2014 08;15;47PM.tif0.029 141.919 106 210 4.115651 0.901136

10 Nor_Amp03-30-2014 08;15;47PM.tif0.029 141.613 108 212 4.106777 0.892262

11 Nor_Amp03-30-2014 08;15;47PM.tif0.029 159.399 109 211 4.622571 1.408056

12 Nor_Amp03-30-2014 08;15;47PM.tif0.029 162.53 110 213 4.71337 1.498855

13 Nor_Amp03-30-2014 08;15;47PM.tif0.029 155.716 111 213 4.515764 1.301249

14 Nor_Amp03-30-2014 08;15;47PM.tif0.029 111.719 104 118 3.239851 3.214515

15 Nor_Amp03-30-2014 08;15;47PM.tif0.029 111.252 106 119 3.226308

16 Nor_Amp03-30-2014 08;15;47PM.tif0.029 109.565 101 117 3.177385
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Table D.40:  Raw data for quantification of S6 western blots by Image J for for 

samples treated with the Antibiotics in Aim 3 

 

S6

Sr. No Title Area Mean Min Max Pixels Pixel - Bgkgrdtotal:GAPDH AverageB6 Normalized STATS

1 p-S6 Nor/amp 0.032 110.701 85 136 3.542432 0.582603 1.821726 1.109793 1.6415 1

2 02-22-2014 04;55;03AM.tif0.032 102.785 85 136 3.28912 0.329291 0.438562 0.395174 0.634949

3 02-22-2014 04;55;03AM.tif0.032 100.684 85 136 3.221888 0.262059 0.573973 0.517189 0.317475

4 02-22-2014 04;55;03AM.tif0.032 113.233 85 136 3.623456 0.663627 1.604913 1.446137

5 02-22-2014 04;55;03AM.tif0.032 122.152 85 153 3.908864 0.949035 1.651158 1.487807 0.996238

6 02-22-2014 04;55;03AM.tif0.032 112.666 85 136 3.605312 0.645483 1.114154 1.003929 0.495459

7 02-22-2014 04;55;03AM.tif0.032 96.28 85 119 3.08096 0.121131 0.551544 0.496979 0.286053

8 02-22-2014 04;55;03AM.tif0.032 96.345 85 119 3.08304 0.123211 0.225549 0.203236 0.172685

9 02-22-2014 04;55;03AM.tif0.032 94.751 85 119 3.032032 0.072203 0.091755 0.082678 0.063508

10 02-22-2014 04;55;03AM.tif0.032 98.736 85 136 3.159552 0.199723 0.282345 0.254413 0.028402

11 02-22-2014 04;55;03AM.tif0.032 95.064 85 119 3.042048 0.082219 0.189544 0.170792

12 02-22-2014 04;55;03AM.tif0.032 93.535 85 119 2.99312 0.033291 0.169028 0.152305

13 02-22-2014 04;55;03AM.tif0.032 91.635 85 102 2.93232 2.959829 13.22415

14 02-22-2014 04;55;03AM.tif0.032 93.671 85 102 2.997472

15 02-22-2014 04;55;03AM.tif0.032 92.178 85 102 2.949696

1 t-S6 Nor/Amp 0.019 127.871 102 205 2.429549 0.319808

2 nor_Amp03-29-2014 10;50;20PM.tif0.019 150.557 107 209 2.860583 0.750842

3 nor_Amp03-29-2014 10;50;20PM.tif0.019 135.069 104 204 2.566311 0.45657

4 nor_Amp03-29-2014 10;50;20PM.tif0.019 132.802 103 204 2.523238 0.413497

5 nor_Amp03-29-2014 10;50;20PM.tif0.019 141.29 106 211 2.68451 0.574769

6 nor_Amp03-29-2014 10;50;20PM.tif0.019 141.531 105 203 2.689089 0.579348

7 nor_Amp03-29-2014 10;50;20PM.tif0.019 122.598 106 182 2.329362 0.219621

8 nor_Amp03-29-2014 10;50;20PM.tif0.019 139.79 106 196 2.65601 0.546269

9 nor_Amp03-29-2014 10;50;20PM.tif0.019 152.455 112 203 2.896645 0.786904

10 nor_Amp03-29-2014 10;50;20PM.tif0.019 148.269 107 208 2.817111 0.70737

11 nor_Amp03-29-2014 10;50;20PM.tif0.019 133.869 106 191 2.543511 0.43377

12 nor_Amp03-29-2014 10;50;20PM.tif0.019 121.405 108 177 2.306695 0.196954

13 nor_Amp03-29-2014 10;50;20PM.tif0.019 122.819 108 185 2.333561 0.22382

14 nor_Amp03-29-2014 10;50;20PM.tif0.019 110.138 103 117 2.092622 2.109741

15 nor_Amp03-29-2014 10;50;20PM.tif0.019 111.94 105 121 2.12686
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